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FOREWORD 

The National Rural Electric Cooperative Association (NRECA) has organized the NRECA-U.S. 

Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and 

study a broad range of advanced Smart Grid technologies in a demonstration that involved 23 

electric cooperatives in 12 states. For purposes of evaluation, the technologies deployed have 

been classified into three major sub-classes, each consisting of four technology types. 

Enabling Technologies:  Advanced Metering Infrastructure 

 Meter Data Management Systems 

 Telecommunications 

 Supervisory Control and Data Acquisition 

Demand Response:  In-Home Displays & Web Portals 

 Demand Response Over AMI 

 Prepaid Metering 

 Interactive Thermal Storage 

Distribution Automation: Renewables Integration 

 Smart Feeder Switching 

 Advanced Volt/VAR Control 

 Conservation Voltage Reduction 

To demonstrate the value of implementing the Smart Grid, NRECA has prepared a series of 

single-topic studies to evaluate the merits of project activities. The study designs have been 

developed jointly by NRECA and DOE. This document is the final report on one of those topics. 

 

 

 

 

 

 

 

 

 

 

DISCLAIMER 

The views as expressed in this publication do not necessarily reflect the views of the U.S. 

Department of Energy or the United States Government. 
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1.0 Introduction 

The National Rural Electric Cooperative Association (NRECA), through its research arm, the 

Cooperative Research Network (CRN), supports co-ops in the adoption of new technology and 

technology applications meant to control costs and improve reliability and service levels. The 

NRECA Smart Grid Demonstration Project (SGDP), as awarded by DOE, has directly benefited 

co-op utilities by furthering their understanding of the impacts and risks associated with smart 

grid technology deployments. It has further benefited utility customers through education on the 

potential benefits of modern technologies. 

This Final Report includes information on several of the demand response (DR) programs 

deployed under NRECA’s SGDP. It provides an overview of DR study objectives, co-ops 

participating in the DR study, and the programs implemented. It also provides a general 

overview of relevant DR technologies, program benefits, and solution costs. Data collected and 

reviewed to date are summarized, along with a discussion of data issues and anomalies specific 

to each co-op. Finally, the research objectives, approach, and results of our detailed econometric 

analysis—which was focused on testing the theoretical basis for DR—are presented, along with a 

discussion of the nexus of our study boundaries and the proposed Demand Response Screening 

Tool, which is detailed in Appendix A. Lessons learned from the entire research and analysis 

effort also are provided to inform future analyses. 

Our desired analysis approach was to test various dimensions of the diverse co-op programs and 

validate the theoretical basis of these programs across a wide spectrum of variables. Gaining an 

understanding about demand response performance versus pricing program mechanisms and 

varying customer attributes enables co-ops to make educated decisions on the type of program 

that would serve their needs effectively, not only from a program structure design approach but 

also considering the customer type that would be ideal to recruit. Based on the limited number of 

co-ops that had valid and useful data and their current DR programs, our initial objectives were 

tailored to align with this less diverse field of analysis. Given that each of the co-ops had 

implemented demand response only with direct load control (water heating and air conditioning), 

the findings presented in this report are reflective of these types of programs only. 

2.0 Overview of NRECA SGDP Demand Response Projects 

2.1 Description of Co-op Projects 

The SGDP included installation and demonstration of equipment designed to affect consumer 

behavior and alter the time pattern of electric energy usage by certain installed appliances. Systems 

deployed included in-home displays (IHDs) and load control switchgear. The technology of an 

IHD provides an avenue for the presentment of pertinent electric energy information, such as the 

current or cumulative level of consumption, the current effective price for time of use (TOU) and 

other dynamic pricing programs, and notice of incipient demand charges to the consumer. This 

enables consumers to make appliance use choices based on economic criteria. Load control devices 

on appliances provide an avenue for cooperatives to manage load by direct action. AMI systems 

with two-way communications are considered enabling technologies for direct load control (DLC). 

The SGDP included advanced metering infrastructure (AMI) as an enabling technology for the DR 

programs, along with previous or newly installed communications networks. Table 1 depicts the 

equipment deployed by the participating cooperatives that considered demand response programs. 
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Table 1. Summary of Co-op DR Equipment Acquired 

Participants 

Demand Response 
    

IHD/Web 

Portal Pilots 

DR over 

AMI  

Prepaid 

Metering 

Interactive 

Thermal Storage 
Adams Electric Co-op, IL X X   

Calhoun Co. ECA, IA  X   

Clarke Electric Co-op, Inc., IA  X   

Delaware County Electric Co-op, NY X X   

Delta Montrose EA, CO X  X  

EnergyUnited, NC   X  

Flint EMC, GA X    

Great River Energy, MN    X 

Humboldt REC (Midland), IA  X   

Iowa Lakes EC, IA X X   

Kaua'i Island Utility Co-op, HI X X   

Kotzebue Electric Assn., AK X  X  

Lake Region Electric Co-op., MN X    

Menard Electric Co-op, IL X    

Minnesota Valley EC, MN X X   

Owen Electric Co-op, Inc., KY X X   

Prairie Energy Co-op, IA  X   

 

These methods of managing consumer demand are intended to operate in such a way as to 

minimize environmental discomfort and increase consumer satisfaction. The benefits that accrue 

over time are expected to include reduced costs of power supply to the utility and related electric 

energy cost savings for retail consumers. 

2.2 Research Objectives – Economic Value and Consumer Presentment 

Consumer- or cooperative-initiated actions to affect end-use activity can provide several benefits 

to the electric system. NRECA/CRN’s primary research objective was to examine the validity of 

previously hypothesized and tested demand response models, thus enabling revisions of and 

enhancements to these models. The models would then be available to be included in the Open 

Modeling Framework (OMF) to provide a means to more thoroughly estimate such factors as 

distribution system losses and the interrelationship of distribution automation with demand 

response. The OMF thus could be used to evaluate the economic impacts of both utility and end-

user actions, such as response through in-home displays, within a single computational 

framework. 

2.3 Role of Demand Response in the 21st Century Co-op 

Co-ops increasingly are looking to demand response as a means of shifting and reducing peak 

demand, deferring capital upgrades to distribution infrastructure, and minimizing wholesale 

energy demand charges. As co-ops and the utility industry evolve into the 21st century, the 

utility will continue to be the primary beneficiary of most direct benefits; however, these cost 

savings in theory should be reflected as future energy and demand charge reductions for co-op 

customers. 

Demand response likely will continue to grow in its influence on customer energy awareness and 

usage. IHDs and smart thermostats can help customers manage their load profiles and total 

consumption, leading to further dollar savings. 
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Another form of demand response is likely to continue growing in popularity and grid impact—

the use of distributed generation (DG) and energy storage to shift and reduce peaks. Among 

many other grid, environmental, and financial benefits, the benefits of DG and storage to peak 

load management will be significant to co-ops and associated G&Ts, given the dispatch 

flexibility and ramp times characteristic of some of these assets. 

3.0 Overview of Demand Response Programs 

Cooperatives and other utilities have used demand response since the mid-1900s to ensure that 

demand does not exceed supply and to manage the cost of supply. Early programs employed 

utility direct load control of customer-owned loads in the residential sector and interruptible 

programs in the commercial and industrial (C&I) sectors. Particularly prominent for 

cooperatives, management of irrigation pumps has been a productive demand resource for many 

years. As technology has enabled greater customer participation, some DR programs have 

migrated from direct utility control to customer control in response to a signal from the utility. 

This section summarizes the major parameters, applications, and technologies of demand 

response for cooperative utilities. 

3.1 Applications 

3.1.1 Peak Demand Reduction 

The principal focus of demand response is generally to reduce peak demand. Other goals—such 

as energy conservation—typically are secondary and/or separately addressed. Depending on the 

cost structure of a co-op’s power supply, reducing peak demand reduces generation, transmission 

demand charges, or operating costs, thus reducing overall cost of service for all members. 

Reducing peak demand also can delay the need to expand transmission and distribution (T&D) 

capacity. Over the life of a distribution system, using demand response routinely to delay 

capacity upgrades by, for example, one year, can save a significant sum, roughly equal to the 

interest charge at prevailing rates on the utility’s annual capacity expansion budget. 

In addition, though often not financially quantifiable, reducing demand may reduce the co-op 

members’ carbon footprint if peaking supplies are more carbon intensive than base load supplies. 

This will be the case, for example, if base load is supplied by nuclear or hydro sources and peak 

is served by fossil-fueled generation. 

3.1.2 System Reliability 

In the form of direct load control, demand response has always served an important role in 

system reliability by mitigating peak demand during challenging operating periods. These 

periods may arise due to unexpectedly high demand (e.g., due to unseasonably hot weather) or 

diminished supply (e.g., due to unscheduled supply shutdown or maintenance). 

In some electric markets, demand response is now treated on a par with conventional generation 

as a non-spinning reserve that the system operator can invoke to balance supply and demand. 

3.1.3 Other DR Applications 

In the same way that local demand response can defer the need for distribution capacity 

expansion, coordinated regional DR programs can mitigate transmission congestion and delay 

the cost of transmission expansions. The value of this extends well past its financial impacts into 

environmental and social domains, where transmission expansion often encounters major 

obstacles. 
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Perhaps the most important role of demand response, just now emerging, is to dynamically 

manage demand to follow the variation in intermittent renewable supplies, such as wind and 

solar energy. While the technology for this appears to be available now, policy and practice are 

just beginning to apply it as renewable sources become economically attractive. Over time, by 

enabling reliable and renewable electric supply, success in this effort will very substantially 

mitigate greenhouse gas emissions, supporting regional economies that are concurrently robust 

and environmentally more benign. 

3.2 DR Program Benefits 

3.2.1 Avoided Capital Costs 

As mentioned in the previous section, judicious use of demand response can delay the need to 

expand T&D capacity. Similarly, it can defer the need to acquire new generation resources. In 

both cases, the direct financial value to the co-op is equal to the interest on capital that would 

have been applied to secure the new T&D or generation. For example, deferring a $100,000 

distribution upgrade for 3 years garners a $15,000 benefit if the utility’s cost of capital is 5% 

($5,000 per year on $100,000). 

Some may debate whether the result is an avoided capital cost, or simply a delayed one. As 

demand response becomes integral to electric infrastructure operation, we may reasonably expect 

that (for example) deferring that $100,000 upgrade for 3 years will, for the same reasons, defer 

all subsequent upgrades for that system segment for generations to come. In effect, it achieves a 

permanent reduction in the capital cost of the electric assets needed to serve that load—an 

avoided capital cost. 

Secondary benefits are more uncertain but may be much larger because things that change during 

the delay period can significantly alter the investment results. For example: the price of natural 

gas (or another major factor) may change a generation decision substantially; demand response 

or generation investments by others in the region may reduce some of the local need for new 

capacity; changes in DR technology or public participation/response may further delay the 

investment. 

3.2.2 Avoided Energy Costs 

Energy cost per kWh during peak periods is typically higher—sometimes much higher—than 

during off-peak periods. Therefore, demand response can reduce energy cost to the co-op, even 

though it does not always reduce total energy consumption. For example, shifting water heating 

load from peak to off-peak periods will have no direct effect on members’ use of hot water. 

Thus, the kWh consumed to heat the water will not change materially. If the water heaters are 

controlled off for a long period, making the water less hot, members are likely to use more of it, 

with the result that the energy use will be about the same. In all cases, the “rebound” or “catch-

up” consumption that occurs after the control to bring the water heaters back up to full 

temperature will offset the kWh reduction during the peak period. 

Controlling air conditioners often results in some kWh reduction because members receive less 

space cooling. Therefore, the co-op and its members benefit from the reduced kWh incurred at 

peak period prices and from a small reduction in overall kWh consumption for the day. By the 

time the control program ends in early evening, the day is cooler and the catch-up consumption 
is less than the kWh avoided during the peak period. 
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Energy avoided can be significant in a DR program in which the utility sends a signal (a price 

signal or simply an event signal) to members and allows them to control the loads. In such cases, 

members will often do things the utility cannot do to reduce their consumption. They may turn 

off lights, decide to cook on a gas grill instead of an electric range, go to the movies and limit air 

conditioning (AC) of the house, reduce ventilation power to the barn if the day is windy, etc. DR 

programs that let the consumers decide what loads to shed consistently produce greater kWh 

reductions than utility direct control programs because the consumers have greater access to 

more of their loads and are commonly willing to respond to the financial incentives of the 

program. 

3.2.3 Other DR Benefits 

DR produces many other benefits that, though not large individually, are important in aggregate. 

Electric line losses are proportional to the square of the current in the line. Therefore, when line 

current is high, losses are disproportionately higher. Demand response reduces the current when 

it is highest. For example, a 17-amp current in a distribution line may be reduced to 15 amps—a 

12% reduction.
1 The losses in that line will be reduced by 22%, however.

2 Therefore, demand 

response reduces line losses at the time when they are the highest, reducing the co-op’s operating 

costs by improving the overall efficiency of distribution. 

The life of current-carrying assets in electric distribution is a function of time, temperature, and 

electric load. Partly because load affects asset temperature, high loads disproportionately shorten 

asset life. DR programs that reduce peak distribution loads extend the life of the distribution 

assets by reducing the time incurred at high load and high temperature. Expressed as a 

percentage, the potential for life extension is small, less than 10%. Because the total capital cost 

of the assets is large, however, this benefit is significant in the long run. 

In parallel with the longer equipment life, demand response reduces maintenance costs for that 

equipment. Transformer overloads are reduced in frequency and severity, stress on connections is 

reduced, and switches last longer. The saving is small but cumulatively important over time. 

Demand response lowers co-op members’ electric bills directly in two ways, as mentioned above. 

It reduces the cost of energy by avoiding kWh during peak periods (or by minimizing demand 

charges to the co-op), and it reduces members’ kWh consumption, especially if they have 

responded individually to DR events by shedding significant loads. The “other DR benefits” 

mentioned in this section also translate into bill savings for members. That is, reduced losses, 

extended asset life, and reduced maintenance costs all contribute to better service at lower cost. 

This enduring member benefit is the “bottom line” of demand response and is where the overall 

value of demand response shows the most. 

  

                                                 
1
 100% × [1 − (15 ÷ 17)]. 

2
 100% × [1 − (15

2 
÷ 17

2
)]. 
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3.3 Enabling Technologies 

Demand response and load management (LM) systems are composed of the following: 

 Devices at customer sites to communicate with customers and display information to them 

(optional in pure “direct” load control programs); 

 Devices at customer sites to control customer loads; and 

 IT resources at the utility to manage the program and data, and conduct communication with 

customer equipment. 

It is productive, and therefore usual, to guide and enhance the load management process by using 

Supervisory Control and Data Acquisition (SCADA) resources. This section describes these 

elements individually. Communication equipment and networks interconnect the system 

elements to transfer messages and data. These networks are diverse and may be public (e.g., a 

cellular phone network, broadcast FM radio, or the Internet) or private (e.g., a utility-owned 

meter communication network). 

3.3.1 In-home Displays – Types and Information 

IHDs make available real-time cost, usage, and related information to the customer. They range 

from simple to full featured and, correspondingly, from lower to higher cost. Some displays are 

able to receive signals from ZigBee-equipped smart meters, while others that do not are suitable 

for homes that have more traditional or advanced meters without ZigBee. 

Simple devices only receive and display energy information. More capable versions allow the 

user to tailor the way the information is displayed, such as altering units (e.g., Fahrenheit or 

Celsius) or time dependence (e.g., hourly average kWh, daily average kWh, etc.). Even more 

capable devices can control the home’s energy consumption in response to user programming. 

Some combine energy information and management with other convenience features. 

The information residents receive from an IHD principally comprises energy (kWh) consumption 

and demand (kW) from any of a wide range of intervals the resident chooses. For example: 

 Current kW demand 

 kWh consumed so far today 

 Maximum demand today 

 kWh consumed and maximum demand to date this month 

 kWh consumed and demand yesterday (or last week or month) or any individual day (or 

week or month) 

Most devices also display the current time, day, and date. Those that can receive utility signals 

display DR event alerts. More capable (and expensive) devices provide more information, 

including inside and outside temperature, electricity price, graphs of any of these parameters over 

various periods, and projections of total kWh (and sometimes even the cost in dollars) at the end 

of the current month. Some also display environmental impact information, such as the estimated 

carbon footprint associated with the recorded kWh consumption. 

Appendix A lists additional examples and their features. Note that the devices shown in 

Appendix A rely on a ZigBee-equipped smart meter to send meter data to the IHD or thermostat. 

However, DR programs can still be practical when the utility has not deployed ZigBee-equipped 

smart meters. Various providers offer devices that receive signals and data from the utility via 
paging, the Internet, a cellular phone network, or the electric power line. 
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3.3.2 Load Control Devices 

“Load control” is control by the utility of customer-owned loads. Control commands are 

generated either at the utility or in a customer-programmed device (as described above) and are 

executed by the actual control device: a switch controlling the power to the load or a relay that 

controls the load, such as the relay in a thermostat. Switches are available to control loads in two 

categories: plug-in loads and wired-in loads. 

Plug-In Loads 

Typical large plug-in loads, as mentioned earlier, include dehumidifiers, window air 

conditioners, and chest freezers (to be controlled for short periods only). Though smaller plug-in 

loads, such as table lamps and fans, are too small to be of direct interest to a utility, they 

collectively constitute a significant control opportunity for the resident and the utility. These 

loads typically are equipped for control by the resident as part of an overall response to utility 

DR events. 

Control devices for plug-in loads are widely available from many sources, including hardware 

and building supply stores, and from online suppliers of automation and control equipment. 

Typical costs are $20 to $80 per controlled load, plus $50 to $300 for a “hub” or central control 

and communication box. 

Wired-In Loads 

Wired-in loads routinely found in load control and DR programs include electric water heaters, 

air conditioners, pool and spa pumps, and electric strip and thermal storage heaters. These loads 

typically are served through a circuit breaker and are hard-wired to the supply line. The load 

control switch must be installed by a qualified electrician between the circuit breaker and the 

load. Control switches for wired-in loads are usually in plastic weatherproof NEMA-compliant 

boxes and can be provided with any of various communication technologies, from public cellular 

to private utility automation network radio. 

3.3.3 Ancillary In-Home Devices 

It is useful to be aware that, in some cases, the in-home devices described above will not operate 

reliably without additional equipment, which must be acquired and installed at additional 

expense. Primary examples are home network range extenders and protocol translators 

(sometimes called gateways). In residential applications, these devices typically cost less than 

$200 and can be installed by the resident, but a minority of residential situations may require 

more intensive effort to achieve reliable communication, incurring on-site technical support for 

program success. 

3.4 Demand Response Program Parameters 

3.4.1 Financial 

Utilities arrive at the financial incentives embedded in DR programs through a variety of 

approaches, based on their power supply situations, customer base, and level of sophistication. 

The following provides a description of the typical incentive structure of DR programs and the 

typical approach to parameterizing those incentives and price differentials. 

Dynamic Pricing and Other Price-Driven Programs 

Dynamic pricing programs offer differential rates or a rebate on consumption during prescribed 
hours during on- and off-peak periods. In particular, dynamic pricing programs under this 

umbrella involve differing rates or rebates during event periods that are typically prescribed 
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during, and must be triggered by, a particular time prior to the event. The pricing differential 

typically incorporates some combination of the following: 

 Differentials in the cost of energy between on- and off-peak periods and during “super-peak” 

periods and otherwise. This information can be estimated from utility records regarding 

generating unit operations and cost characteristics, and power market transactions 

information or market indices and intelligence. 

 Generation costs based on either of the following: 

 Cost of new generating capacity on an amortized basis, allocated across an assumed 

number of event hours in any year; 

 Wholesale demand rates allocated as above to an assumed number of event hours in a 

period. 

 Transmission costs based on assumed costs of facilities or wholesale transmission billing 

rates allocated to assumed event hours, as above. 

 Distribution costs, determined in a similar fashion as transmission costs. 

Direct Load Control (DLC) programs 

DLC programs typically are incentivized through either (1) specific dollar amount credits to the 

monthly bills of participating customers—across the entire year or during months for which 

events are allowed or expected to occur, and/or (2) rebates on new devices (typically of a 

particular efficiency threshold) installed with a DLC device. However, there are numerous 

programs for which no incentive is offered but that achieve some penetration. 

The incentive level typically is derived through either an estimate of the benefit of avoided 

capacity, determined as described above for price differentials, or a survey of the practices of 

surrounding utilities. 

3.4.2 Temporal 

DR programs typically have prescribed timing, duration limits, and frequency limits, though not 

all do. The temporal parameters typically are developed so as to ensure a high probability of 

avoiding load at the most opportune time—during a system peak, the billing peak (for utilities 

served at wholesale), or a regional peak. Many programs are limited to a particular season, 

corresponding with the typical system peak conditions. Dynamic pricing programs that could be 

characterized as demand response, such as critical peak pricing (CPP), typically are limited to 

prescribed times of the day or potential event periods (as short as 2−3 hours up to 7 hours). Most 

DR programs have prescribed limits with respect to the number of events that can be called 

within a particular month or season. For example, many utilities limit DR events to some 

maximum number of events per summer season. DLC programs are less likely to have such 

limits and often are managed by utilities to minimize customer inconvenience and attrition. 

3.4.3 Operational Conditions 

As mentioned above, DR programs typically have certain prescribed timing characteristics 

designed to maximize the likelihood that they will be triggered during peak periods that 

correspond to demand cost incidence. Some DR programs also have prescribed triggers for 

events, corresponding to system load levels, load levels within the region (e.g., as reported or 

forecasted by an Independent System Operator, or ISO), or temperature conditions. Most DR 

programs, however, instead merely have such triggers incorporated into the DR program 

operator’s practice on triggering events. In that case, it is the other prescribed characteristics that 

the participants solely rely on to anticipate the timing, length, and frequency of events. 
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3.4.4 Target Loads and Customer Groups 

In 2012, the Federal Energy Regulatory Commission (FERC) reported
3 that DR programs in the 

U.S. had the potential to reduce demand by 66,300 MW. Of that, about 12% was in the 

residential sector, and nearly all of the rest was in the commercial and industrial sectors.
4

 

In the residential sector, DR programs address large and small loads. The large loads are 

primarily AC, electric space heating (including heat pumps, storage heat, and baseboard or 

“strip” heat), and pool and spa pumps. These often are controlled directly by the utility when the 

resident has enrolled in a control program. 

Small loads include essentially all other loads in residential service. Any that are discretionary to 

the resident can be controlled by the resident. DR programs that convey a price or other financial 

incentive to participants allow each to select what loads to control. Section 3.3.2 describes 

available devices residents can use to implement such control. Common choices are large loads 

(if not controlled by the utility), area lighting, dehumidifiers (a relatively large and deferrable 

load not readily controlled by the utility because it is a plug-in load), and food freezers (which 

stay cold for just a few hours but cannot be deferred longer). 

Significant residential loads that generally are not controlled are well pumps, sump pumps, and 

electronic loads, such as entertainment and computing. Due to the only marginally deferrable 

character of food refrigeration and freezing loads, most residents choose not to control them. 

Loads in the C&I sector can be divided similarly into those controlled by the utility and those 

controlled by the user. The diversity of loads is large, making it difficult to list them 

comprehensively. In general, they include, but are not limited to the following: 

 Lighting (both interior and exterior) 

 Process machinery (conveyors, mixers, grinders, machining operations, assembly operations, 

etc.) 

 Process heating 

 Large-scale space conditioning 

 Service operations (escalators, elevators, information and displays, etc.) 

 Irrigation and other pumping 

3.5 Success Metrics 

DR programs can be evaluated based on a combination of estimates regarding the abatement of 

peak demand and, in some cases, avoided energy, coupled with a valuation analysis regarding 

the cost to otherwise serve that demand or energy from either traditional supply-side generating 

resources or via wholesale purchases. Cooperatives can leverage a relatively standardized 

framework for conducting an analysis of success metrics. This section provides an overview of 

the central tenets of such a framework, namely (1) the manner in which avoided energy or 

demand is valued, and (2) financial metrics that compare the cost of the DR program to the 

value of the avoided energy or demand. Note that this section assumes that the engineering 

                                                 
3
 Federal Energy Regulatory Commission. “Assessment of Demand Response & Advanced Metering.” Staff Report. 

December 2012, p. 22. 
4
 The FERC report separated C&I programs from “wholesale” programs by ISOs, regional transmission 

organizations (RTOs), and other wholesale entities. Since the great majority of load participation in such wholesale 

programs is composed of C&I users, we combine the wholesale demand reduction with the C&I figure. FERC 

included agricultural consumption in the C&I sector. 
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estimates associated with individual DR responses (i.e., kW ratings and technical estimates of 

abatement) can be readily obtained. 

Valuation of Avoided Peak Load/Energy 

The key components of avoided cost (or benefits) of a given DR program over a pre-specified 

time horizon, some of which may not necessarily apply to every program, include the following: 

 Avoided or delayed generation or purchased power capacity additions (demand savings); 

 Avoided wholesale costs of energy production; 

 Avoided transmission/distribution cost (including avoided capital expenditures); 

 System loss savings; 

 Avoided ongoing operation and maintenance (O&M) costs associated with transmission 

and T&D system improvements (if any); and 

 The value of potential power market sales of resources that are free to serve the external 

market in place of the energy generation that has been avoided as a result of the program. 

From an avoided cost perspective, the bulk of benefits associated with DR programs will arise 

from avoided demand and energy costs, potentially including avoided or delayed capacity 

additions costs if the DR program is of sufficient size and scope in participation. Capacity 

savings represent value in either deferred or avoided investment costs by the utility as well as a 

reduction in the cost of running expensive peak generation, which may be reflected in a demand 

tariff. Energy savings represent both immediate and ongoing cumulative benefits associated with 

the reduction in generation fuel and operating costs as well as losses. Depending on the utility 

in question, there are typically two key marginal capacity and energy situations that are likely 

to be encountered for targeted members—specifically, (1) the utility has avoided costly 

operation of native/existing peaking units; or (2) the utility buys marginal capacity and energy 

from the market or is a participating member of a G&T, whereby avoided costs can be mapped 

to an existing demand or energy rate. 

In the former case, it is critical to identify the avoided marginal generating resource, either by 

selecting from a list of pre-defined generic marginal units (e.g., large natural gas combined cycle 

unit, small gas peaking unit, etc.) with performance characteristics representative of the regional 

market, or defining the operating characteristics of a specific marginal unit (which could also 

represent a contract, tariff rate, or market purchase). 

To capture avoided demand costs, it is necessary to collect information on marginal 

generating unit capital and fixed O&M costs to estimate potential capacity savings. To the extent 

that there is an intermittency in the ability of the DR program to align peak shaving with the 

utility’s system peak, such issues typically are examined to develop reasonable assumptions for 

dependable capacity (or the amount of capacity that realistically can be avoided at the time of 

the utility peak), which then are applied to the requested capacity cost information to determine 

capacity benefits. 

To develop projections of avoided and incurred marginal energy costs, the heat rates of the 

assumed marginal generating resources (generic or member-defined) are typically multiplied by 

a (member-defined) forecast of fuel prices plus variable O&M and emission allowance costs 

(again, either pre- or member-defined) for the marginal unit to derive a total per-unit 

($/MWh) marginal average energy cost for these resources. These average per-unit costs then 

would be multiplied by the projected avoided energy of the DR program (adjusted for marginal 

losses) to derive total energy cost impacts. 
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In the absence of such detailed information, a given co-op can review its existing contracts and 

tariffs to determine the most appropriate energy and demand rates to input into the evaluation 

model. 

To the extent that the other aforementioned elements of avoided cost are present and relevant to 

a specific utility, most notably the potential for market sales, such estimates can be included as 

secondary benefits in an economic evaluation framework so as to provide a fair and objective 

evaluation of potential program benefits. Other examples of secondary benefits include, but are 

not limited to: 

 The monetized value of avoided carbon emissions associated with abatement, using 

externally derived projections of potential future carbon costs or internal shadow values 

associated with carbon avoidance; 

 The monetized value of jobs created that are associated with DR program implementation; 

and; 

 The downstream economic benefits associated with energy and demand savings that 

represent an additional amount of disposable consumer income in the general economy. 

Program Costs and Key Metrics 

From a cost perspective, details regarding DR program cost elements can be developed using 

detailed information on grant funding and other internal utility costs. A more detailed cost 

itemization can help to better communicate the overall cost-benefit picture for a given 

deployment. The main categories of DR program costs can be defined as follows: 

 Generic procurement costs associated with the communication network; 

 Capital cost of communications devices; 

 Capital and staffing costs associated with enhanced IT; 

 Installation and program management costs; 

 Marketing collateral associated with participant recruitment; 

 Lost electric revenues resulting from the avoided peak demand; 

 Customer education and public relations costs; and 

 Marginal program participation incentive levels (i.e., discounts or rebates for 

participation) and other ancillary costs, as appropriate. 

Understanding success for a given DR program is a function of ensuring that the best available 

estimate of costs is combined with the best available estimate of avoided costs. While there are 

numerous approaches to an economic analysis of benefits, there are several industry-standard 

cost-benefit ratios, which can be defined as follows: 

 Utility Cost Test (UCT) – A measure of whether the benefits of avoided utility costs are 

greater than the costs incurred by a utility to implement the DR program. 

 Rate Impact Measure (RIM) Test – A measure of whether utility consumers that do not 

participate in a DR program would see an increase in retail rates as a result of other 

customers participating in a utility-sponsored DR program. 

 Total Resource Cost (TRC) Test – A measure of whether the combined benefits of the 

utility and customers participating in the DR program are greater than the combined costs to 

implement the DR program. 

The components of each of these ratios are summarized below. Note that such descriptions are 

generic in nature, and the exact applicability to a specific DR program will differ, depending on 
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the nature of the measure(s) deployed. Some costs may be equal to zero for a significant number 

of DR programs. 

Utility Cost Test (UCT): 

Benefits = Avoided Energy Supply Costs (net generation level decreases × marginal energy costs) 

 + Avoided Capital Supply Costs (net generation level decreases × incremental capital costs) 

 + Avoided O&M Supply Costs (net gen. or distrib. level decreases × marginal O&M costs) 

 + Participation Charges 

Costs = Increased Energy Supply Costs (net generation level increases × marginal energy costs) 

 + Increased Capital Supply Costs (net generation level increases × incremental capital costs) 

 + Increased O&M Supply Costs (net gen. or distrib. level increases × marginal O&M costs) 

 + Utility program costs (administrative costs) 

 + Incentives (utility incentives, rebates, etc.) 

 

Rate Impact Measure (RIM) Test: 

Benefits = Avoided Energy Supply Costs (net generation level decreases × marginal energy costs) 

 + Avoided Capital Supply Costs (net generation level decreases × incremental capital costs) 

 + Avoided O&M Supply Costs (net gen. or distrib. level decreases × marginal O&M costs) 

 + Revenue Gains (net meter level increases × retail rates) 

 + Participation Charges 

Costs = Increased Energy Supply Costs (net generation level increases × marginal energy costs) 

 + Increased Capital Supply Costs (net generation level increases × incremental capital costs) 

 + Increased O&M Supply Costs (net gen. or distrib. level increases × marginal O&M costs) 

 + Revenue Losses (net meter level decreases × retail rates) 

 + Utility program costs (administrative costs) 

 + Incentives (utility incentives, rebates, etc.) 

 

Total Resource Cost (TRC) Test: 

Benefits  = Avoided Energy Supply Costs (net generation level decreases × marginal energy costs) 

 + Avoided Capital Supply Costs (net generation level decreases × incremental capital costs) 

 + Avoided O&M Supply Costs (net gen. or distrib. level decreases × marginal O&M costs) 

 + Avoided Participant Costs (avoided capital, O&M, etc.) 

 + Tax Credits 

Costs = Increased Energy Supply Costs (net generation level increases × marginal energy costs) 

 + Increased Capital Supply Costs (net generation level increases × incremental capital costs) 

 + Increased O&M Supply Costs (net gen. or distrib. level increases × marginal O&M costs) 

 + Incremental Participant Costs (capital costs, O&M, etc.) 

 + Utility DR Program Administrative and General (A&G) Costs 

 

The computations of such ratios should reflect all of the incurred incremental costs and avoided 

incremental costs (benefits) applicable to the measure in question. 

From the perspective of a given co-op, metrics that may be easier to communicate to 

stakeholders, such as the Net Present Value of Net System Benefits, or the internal rate of return 

of a given investment, may be used to complement the above cost-benefit analyses. In most cases, 

the TRC can be made equivalent to the cost-benefit ratio that reflects Net System Benefits, as 

long as the costs and benefits have been parameterized appropriately to capture the correct 

utility perspective. 

Interpretation of success metrics by members and other stakeholders should be fairly simple 

by design. All of the relevant avoided costs of the DR program typically are subtracted from the 

total DR program intrinsic costs in each year. All of these Net System Benefits then are 

discounted back to today's dollars and added to compute the Net Present Value (NPV) of Net 
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System Benefits. In a year in which costs outweigh benefits, the benefit-cost ratio will be less 

than 1.0. This ratio hopefully should be above or equal to 1.0 as the study horizon extends. 

In general, a DR program that has a positive NPV of Net System Benefits should be 

implemented because the benefits outweigh the costs in the long run. If a Program has a negative 

NPV of Net System Benefits, program parameters may need to be re-examined, sensitivities may 

be necessary, or it may be that the program is simply too expensive relative to the expected 

demand/energy reductions. Devising a consistent framework for evaluating success in advance 

of deployment can help a utility ascertain the reasonableness of the level of investment 

required to achieve a certain amount of DR capability. 

Finally, in certain instances, it may also be desirable to determine the number of participating 

customers required for the system to be cost-effective, given that a broader range of participants 

can absorb certain fixed and administrative costs of a given deployment more effectively, and 

that a larger pool of participants will result in a larger amount of abatement. Goal-seek 

techniques that leverage the above cost-benefit framework or sensitivity analysis can be utilized 

to determine the point at which the NPV of net program benefits turns positive (i.e., when the 

program becomes cost-effective, assuming a specific time horizon for the evaluation). 

4.0 Review of Previous Empirical Studies of Demand Response 

Numerous studies have analyzed the results of dynamic pricing programs—primarily utility-

sponsored pilot programs—over the last 10−15 years. The methodologies used to ascertain the 

significance of and quantify differences in load levels and load profiles, and the results of these 

studies, are discussed below. 

4.1 Study Methodology 

Demand savings and price elasticity estimates that are reported as part of many studies of DLC, 

DP, and other DR programs typically are estimated using regression techniques. The usual 

approach is to assemble load profile data for both program participants and non-participants (the 

latter group commonly being referred to as a “control group”) and develop regression equations 

that seek to explain variations in load levels or characteristics (e.g., ratio of on- to off-peak load) 

as a function of DR event data; variables capturing enabling technologies; and other variables, 

including weather conditions, home and appliance characteristics, household characteristics, and 

day type and seasonal indicators, among others. 

While demand savings estimates stand on their own and can be directly useful in gauging the 

value of some DR programs, elasticity estimates, in the form of both substitution and own-price 

elasticity, must be combined with pricing information to derive load profile changes resulting 

from dynamic pricing programs. 

For dynamic pricing program evaluations, it is also fairly common for the price ratio to be 

embedded with additional covariates that capture the influence of other drivers—such as weather 

conditions, the installation of certain appliances, or the presence of IHDs or other enabling 

technologies—on the amount by which customers respond to changes in the dynamic pricing. 

The elasticity of substitution can be derived from the empirical equation parameter estimates, 

either directly as the parameter on the price ratio, or the parameter on the price ratio combined 

with other daily conditions (e.g., weather) multiplied by the respective parameter. This elasticity 

of substitution is often reported directly as part of pilot program evaluation studies. 
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4.2 Results 

4.2.1 Dynamic Pricing 

Figure 1 illustrates the peak demand reductions observed for 80 such programs, grouped by 

the type of rate and the use of enabling technologies.
5 In general, critical peak pricing (CPP) 

and peak time rebate (PTR) rates resulted in greater demand reductions than time-of-use (TOU) 

rates. Enabling technologies generally increased the demand reductions. 

 

 
Figure 1. Peak Reduction by Rate Type and Technology for Dynamic Pricing Pilots

6
 

 

A 2011 paper on the subject of dynamic pricing showed that, of 109 pricing programs from 24 

different utilities, the median peak demand reduction was 12%. For those programs that used 

enabling technologies, the median peak demand reduction was 23%. While most of these were 

pilot programs and used various implementation approaches (e.g., different experimental 

structures, varying rates, on-/off-peak time periods, participant enrollment approaches, use of 

control groups, etc.), they generally showed similar price responsiveness from consumers. 

Figure 2 depicts the peak reduction for a subset of the pilot programs, including the differences 

between programs that included enabling technologies (Technology Curve) and those that did 

not (Price-Only Curve). In both cases, the trend is for increasing reductions in demand as the 

difference between on-peak and off-peak prices increases (Peak to Off-Peak Price Ratio). The 

rate of greater reduction decreases at higher levels of peak to off-peak ratio.
7
 

                                                 
5
 L. Wood. Institute for Electric Efficiency. “Dynamic Rates and Smart Meter Benefits.” Presented to MACRUC, 

July 26, 2011. 
6
 Ibid. 

7
 Faruqui, A., and J. Palmer. “Dynamic Pricing of Electricity and Its Discontents.” August 3, 2011, p. 4. 
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Figure 2. Peak Reduction by Rate Type and Technology for Dynamic Pricing Pilots

8
 

 

Another measure of the responsiveness of consumers to dynamic prices is referred to as price 

elasticity. The extent to which customers shift electricity demand from on-peak to off-peak time 

periods can be quantified by the substitution elasticity, while the reduction in demand relative to 

the relevant price can be quantified by the own-price elasticity. Substitution elasticity is defined 

as the percentage change in the peak to off-peak demand ratio resulting from a 1% change in the 

peak to off-peak price ratio. Own-price elasticity is defined as the percentage change in peak 

demand resulting from a 1% change in price. The most prevalent measure of response to 

dynamic pricing is the substitution elasticity, presumably due to its more complete 

characterization of demand response to varying on-peak length and price differential, which 

are not addressed via own-price elasticity and would result in greater variations of estimated 

elasticity across programs with varying characteristics. 

Based on the variety of studies and programs reviewed, estimates regarding elasticity of 

substitution varied from as low as essentially zero, or no response, to a high of approximately 

0.35 (in absolute terms). There seemed to be no definitive variation across program types, which 

included TOU, CPP, and PTR programs. 

Figure 3 illustrates the variation in demand reductions as a function of peak to off-peak price 

ratios for various elasticities based on CPP rate programs (demand reductions typically would be 

somewhat less for TOU programs that involve much longer on-peak periods). As discussed 

previously, the inclusion of enabling technologies like IHDs and programmable communicating 

thermostats (PCTs) typically was demonstrated to increase elasticity, or measured response, by 

10−50%. 

                                                 
8
 Ibid. 
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Figure 3. Peak Reduction, by Rate Type and Technology for Dynamic Pricing Pilots

9
 

 

While the focus of the various pilot programs has been on demand reduction or load shifting, the 

pricing programs have had varying effects on energy use. Most studies of residential 

dynamic pricing pilots reflect that TOU, CPP, and similar pricing programs result in a reduction 

in energy consumption, although some studies have demonstrated a positive impact on energy 

consumption. However, the estimated changes in consumption were typically less than 5%.
10,

 
11

 

4.2.2 Direct Load Control 

The Lawrence Berkeley National Laboratory (LBNL) conducted a 2007 study to determine a 

widely applicable set of savings estimates for AC and water heater DLC programs within the 

footprint of PJM. Duty cycle models were constructed to examine a wide range of potential 

switch cycling strategies (27%, 43%, 50%, 67%, 75%, 87%, and 100%). Demand savings 

estimates were developed using a regression approach, capturing temperature humidity indices 

(THI) from nearby weather stations across the various cycling strategies, and tabularized for use 

by the participating utilities. The results of this analysis suggest the following for AC and water 

heater programs: 

 At a THI of 84°F, the estimated demand reduction on air conditioning DLC for the 15-

minute time period that ends at 5 p.m. ranged from a low of 0.37 kW for the 27% cycling 

strategy to a high of 2.06 kW at 100% cycling. The 50% cycling strategy was estimated to 

yield savings of 0.80 kW. 

                                                 
9
 Faruqui, A., and J. Palmer. “Dynamic Pricing of Electricity and Its Discontents.” August 3, 2011 p. 4. 

10
 Newsham, G.R., and B.G. Bowker. “The Effect of Utility Time-Varying Pricing and Load Control Strategies on 

Residential Summer Peak Electricity Use: A Review.” NRC-CNRC Institute for Research in Construction. 2010, p. 15. 
11

 Goldman, C. et al. “Coordination of Energy Efficiency and Demand Response.” LBNL, January 2010, pp. 2−12. 
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 For customers with a seasonal AC of less than 1,600 kWh, the estimated demand savings 

for air conditioning DLC at a THI of 84°F ranged from a low of 0.21 kW for the 27% 

cycling strategy to 1.34 kW for the 100% cycling strategy. For large users (i.e., those with a 

seasonal use greater than or equal to 1,600 kWh), the demand savings ranged from a low of 

0.48 kW for the 27% cycling strategy to 2.61 kW for the 100% cycling strategy. 

 For DLC of water heaters, analysis was focused on the 100% cycling strategy, with an 

average estimated load reduction for summer weekday periods at hour ending 4 p.m. of 0.24 

kW and for winter weekdays at hour ending 7 a.m. of 0.64 kW. 

The Minnesota Department of Commerce, Division of Energy Resources conducted a 2013 

Demand Response and Snapback Impact Study. The study was focused on the “snapback” 

impact of demand response, which can be defined as the increase in energy and demand in the 

hours immediately following a DR event, as well as research on estimated impacts of various DR 

programs. 

The study utilized three methods of investigation: research on previous studies related to demand 

response, gathering and analyzing aggregate system load and DR data from two large Minnesota 

utilities during demand control days, and using energy modeling to analyze various DR controls 

as applied to typical residential and small commercial buildings. The analysis in this study 

focused entirely on facilities and utilities located in Minnesota and used weather data from three 

Minnesota climates. 

The technologies used for demand response that exhibit snapback were found to be air 

conditioner cycling, water heater curtailment, and electric heating cycling. Other often-used 

technologies do not have snapback effects due to the nature of their operations. These include ice 

storage, electric heating thermal storage, and on-site generation. 

The results of this analysis produced deemed energy and demand savings values for demand 

response and snapback for entire utilities, residential air conditioner cycling, water heater 

curtailment (in both winter and summer peaks), electric heat cycling, and electric heating 

thermal storage, as well as commercial packaged rooftop unit ice storage. These deemed savings 

values were intended to be used as estimates for utilities to determine the energy and demand 

impacts of DR technologies. 

The results of this study show that, although most DR events produce significant snapback, there 

is still a net energy savings. Table 2 has been extracted from the study report and 

summarizes the residential energy modeling results for a typical Minnesota home. 

Table 2. Summary of Estimated Savings and Snapback − Residential
12

 

Measure Description Net kWh Savings kW Savings Snapback kWh Snapback Peak kW 
     

AC Cycling 0.71 0.30 0.72 0.34 

Elec. Heat Cycling 3.11 1.42 5.49 1.97 

Water Heater − Summer 0.40 0.60 2.71 2.71 

Water Heater − Winter 0.09 0.84 2.03 2.03 

Electric Thermal Storage 0.0 25.8 0.0 0.0 

 

                                                 
12

 “Minnesota Department of Commerce Final Report – Demand Response and Snapback Impact Study.” August 2013. 
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4.2.3 Smart Appliances 

The use of major appliances with enabling technologies provides an opportunity to further 

reduce peak demands. As noted previously, consumers have shown a willingness to modify the 

usage of appliances; however, this response generally has required active participation. Under an 

automated DR scenario involving smart appliances, it is anticipated that the response could be 

enhanced. For example, the Northwest GridWise Test Demonstration Projects used automated 

control of selected equipment (e.g., heating equipment, water heaters, clothes dryers) to 

respond either to pricing or other signals (e.g., electric power system frequency). The results 

generally showed the effectiveness of the approach for automated load shedding/shifting and 

acceptance by the participants.
13 A study by the Pacific Northwest National Laboratory 

estimated the benefits of smart appliances, including their potential as a “spinning reserve” 

resource in addition to load shifting and related energy savings impacts.
14 General Electric (GE) 

tested a number of “demand responsive enabled appliances” and a home energy management 

system in advance of the roll-out of its smart appliance product line. In a test on smart DR-

enabled refrigerators in four homes, GE reported demand reductions of 27%.
15 The impact of 

smart appliances on home energy use and overall demand profiles depends on the load 

shedding/load reducing strategies elected. For example, run times/duty cycles can be modified, 

temperature settings can be adjusted, and water usage can be modified—all of which can have 

different effects. However, due to the relatively recent roll-out of smart appliances, there has 

been little experience on the actual DR impacts of these appliances. 

5.0 Overview of Select Co-op DR Programs 

The following discussion summarizes the nature and nuances associated with the DR programs 

deployed by those co-ops interviewed for this study. The discussion is organized into the 

following main categories, on a “by co-op” basis: 

 Program Structure and Application Protocols – High-level program information and 

intelligence regarding the manner in which customers were recruited. Program longevity; 

customer presentment and program development approach; and parameters that constitute a 

DR event. 

 Enabling Technologies and Devices – Types of enabling technologies used to enhance 

customer and load response to DR events. 

 Implementation and Operating Issues – Feedback from our interviews regarding 

logistics and operating issues, as applicable. 

 Data Compilation and Reporting – Preliminary synopsis of the data compilation and 

reporting that has been undertaken by a given co-op. Further follow-up and interaction with 

co-ops currently is underway that will shed further light on the nature and extent of the data 

made available through the Study Data and Asset Tracking System (SDATS) that directly 

maps to a given co-op’s programs. Refer to Section 7 of this report for a detailed review of 

available data by co-op. 

                                                 
13

 D.J. Hammerstrom. “Pacific Northwest GridWise Demonstration Projects. Part I. Olympic Peninsula Project.” 

October 2007. PNNL-17167. 
14

 Sastry, C., V. Srivastava, R. Pratt, and S. Li. “Use of Residential Smart Appliances for Load Shifting and Spinning 

Reserves, Cost/Benefit Analysis.” December 2010. 
15

 The pilot program was operated in cooperation with Louisville Gas & Electric (LG&E) and involved 42 DR- 

enabled appliances in 15 GE employee homes (see Najewicz, D., “Demand Response Enabled Appliances/Home 

Energy Management Systems.” Presentation to NREL, Golden, CO, October 1, 2009.) 
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 Choice of Performance/Impact Metrics – Nature and extent of program performance 

tracking, metrics collected on abated demand and associated savings, or any other approach 

to gathering feedback on program performance, up to and including the solicitation of 

feedback from program participants. 

It is important to note that we have not independently verified the information or accounts 

associated with each description below, the content for which was derived exclusively from our 

interviews with key co-op representatives. Furthermore, in some cases, it is evident that SGDP 

funding was used to enhance capabilities or bolster investment in programs that may already 

have been in place for a given organization. In such instances, we have taken care to focus as 

much as possible on the exact programs within the SGDP umbrella to minimize overlap. 

However, given the opportunity to interface with participating co-ops, we have gathered some 

ancillary intelligence on DR programs that has been infused into this section with due 

consideration of both the confidential nature of certain information and the need to focus 

primarily on SGDP-related investments/outcomes. 

5.1 Clarke Electric Cooperative 

Program Structure and Application Protocols 

Clarke Electric Cooperative (Clarke) in Iowa has roughly 5,000 customers and an 

approximate system peak demand of 20 MW (alternating between summer and winter 

peaking). Annual energy sales are 90,000 kWh. Clarke is served by the Central Iowa Power 

Cooperative (CIPCO), a 12-member G&T. 

Clarke’s program consists of a direct load control pilot with 80 participants. During the 

summer months of June, July, and August, Clarke controls water heaters and central air units 

between the hours of 4−7 p.m. on weekdays every other time the outside temperature exceeds 

92˚F. Water heaters are cycled every 30 minutes, and central air units are cycled every 15 

minutes. The rationale for program choice was predicated on the fact that AC and water heating 

end-uses are more prevalent and thus the largest sources of electricity usage during peak 

periods. The CIPCO summer peak typically occurs between 4–6 p.m., and is the primary 

demand billing determinant for Clarke. The winter period (see below) was chosen for 

simplicity/consistency with the control period for the summer, although Clarke recognized that 

the peak demand savings would be negligible or nonexistent during that period. 

During the winter months of December, January, and February, Clarke controls water heaters 

between the hours of 4−7 p.m. on weekdays every other time the outside temperature is below 

15˚F. Water heaters are cycled every 30 minutes. There are no limits to the number of events that 

can be called. 

Clarke sent out a detailed letter soliciting participation from members. Clarke targeted 90 
participants initially but retained 80 for the pilot program. Member-consumers received 
communications, including email, regular mail, post cards, and recruitment of walk-ins. The 
Clarke newsletter also mentioned the program. CIPCO assisted Clarke with the development of 
a random sample of potential participants to target. The pool of potential participants was 
strategically catalogued to focus on potential participants that currently had an electric water 
heater and who were most likely to have higher AC usage in the summer period. Customer 
presentment focused on the potential to help the co-op save money and incentives for 
participation, as well as a detailed letter that included contact information for Clarke 
representatives and a full description of the main enabling technology (further described below). 
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The participants were provided with incentives. Clarke committed to reward the members for 
allowing Clarke to control their AC units and water heaters for the summer months by crediting 
the account being controlled. The amount credited was set at $40, credited to the account in June 
of each of the two years. Clarke also planned to reward the members for allowing Clarke to 
control their water heaters for the winter months by crediting the account being controlled. The 
amount was set at $20, credited to the account in December of each of the two years. Incentives 
were derived based on benchmarking of nearby utility practices, most notably Alliant. Clarke 
reported that it provided enhanced incentives to obtain sufficient pilot participation quickly, 
given the compressed overall deployment schedule. 

Enabling Technologies and Devices 

Clarke deployed a power line communication (PLC) over an AMI system. The DLC system was 
the last component of the system added. A given event is programmed and kicked off before the 
Clarke office closes. Clarke also installed the technology on some devices within the Clarke 
office for testing purposes. 

Clarke’s main enabling technology from the customer perspective was a Load Control Receiver 
(LCR). When Clarke was not controlling load, participants would see only a green light lit up 
on their LCRs. When the above-cited outside temperature conditions were met, and Clarke was 
engaging in DLC, customers saw a red indicator light lit up on their LCRs. 

Implementation and Operating Issues 

Installation of the equipment began immediately after Clarke obtained participants. The Clarke 
operations department led the installation of the load control devices. Clarke made an effort to 
use one device to control both AC and water heater load whenever possible. The Clarke team 
created procedures and processes to run the Yukon system for testing individual and groups 
of LCRs, in addition to remote testing. Cooper Industries was retained to provide training, 
programming, and support of the Yukon system, working the load control devices in the field. 

Clarke did not report any significant operating issues. There were some early issues related to 
the AMI system that were solved. The system is reportedly working very smoothly. 

Data Compilation and Reporting 

Clarke provided all necessary account information, such as the following: 

 Current and past usage data 
 Current and past temperature data 
 Control dates 
 Control times 
 Interval data from the meters in the group 

The Clarke Operations Assistant compiles the data and submits the information as scheduled. 

Choice of Performance/Impact Metrics 

Clarke has not yet completed detailed analysis of performance or developed specific impact 

metrics. Clarke’s expectation is that, given its relatively small size and the small scale of the 

pilot, it is not reasonable to go to great lengths to determine such program parameters or develop 

an economic evaluation framework. As noted above, incentives were designed at a level that 

would ensure sufficient participation, given the compressed overall pilot schedule. Clarke 

anticipates that analyses conducted by others (e.g., Leidos, NRECA/CRN) will provide good 

information on its program. 
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With respect to feedback on program performance, Clarke provided detailed contact 

information for Clarke staff to all participants, including a direct cell phone number for 

participants to call in case they had significant issues. Clarke reports that there were several 

minor complaints that were entirely related to customer equipment failure, as opposed to the 

nature and extent of the DR program itself. Clarke reports that there has been virtually no 

attrition.  

Clarke does not have any significant plans to adopt additional DR programs at this time. Any 

additional DR program implementation would need to be reviewed and endorsed by CIPCO prior 

to deployment. 

5.2 Flint 

Program Structure and Application Protocols 

Flint has approximately 83,000 total customers. The Flint DR program consists of demand 

reduction via an IHD, which was deployed to 150 customers. There were also 150 customers that 

did not have an IHD but were informed of events via email and text message. The reasoning 

behind this dichotomy was to test for differences in efficacy of the program directly attributable 

to the presence of an IHD. There are also 150 customers that served as a control group. All 

participants in the IHD-based program were solicited on an opt-in basis. 

Flint already has an existing DLC program, with nearly 20,000 DLC devices installed on 

various end-uses, such as ACs, water heaters, and irrigation systems. All of Flint’s customers 

are on an AMI system. To select participants for the IHD program, accounts/meters were 

stratified into different groups to ensure a statistically representative sample of participants. 

Flint’s program was active through 2013, but the current status of the program is being 

evaluated. From June 1−September 30, based on Flint’s review of its load forecast over the 

period 3–7 p.m., events would be called, with no limit on the number of events. Flint reports that, 

given the mild winter weather experienced recently, there has been a need for only two 

prescribed events over the past year – specifically, a 3-hour event and a 4-hour event, when both 

IHD and DLC program participants were activated. 

Customers were recruited for the program via a contest that provided free appliances as a 

giveaway. Flint received 1,200 responses to the contest, and a winning customer was selected. 

Customers were presented with the event signals through IHDs or regular communication 

channels, as noted above. In addition, a dinner was held to discuss the benefits of the program 

and answer any questions that participants may have had about the program. This was done in 

parallel with hand delivery of IHDs to homes. Flint leverages various marketing materials to 

manage its existing DLC programs, such as direct mail, an initial signup incentive, and a credit 

on the participant bill. For the IHD program, customers were provided with a credit rate of 

$0.87/kWh, reduced during a given event. However, the rate was applied to an estimate of the 

difference between usage during the event and the estimated usage that otherwise would have 

occurred. This estimate was derived using a “past-look” algorithm that estimates what usage 

would have been otherwise and then credits the customer for that amount of abated energy. 

Enabling Technologies and Devices 

Flint deployed 150 IHDs as part of the SGDP study exercise. This was the main enabling 
technology regarding the customer. The participant was the main catalyst for reducing energy 

consumption during the events in question. 
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Implementation and Operating Issues 

Flint does not report any operational or implementation issues with the IHDs. The IHD 

program was implemented predominantly as a study exercise. The core idea was to examine how 

voluntary, incentive-based programs compared to its existing DLC customer base and determine 

whether significant behavioral differences existed between an opt-in and an opt-out program 

structure. 

Data Compilation and Reporting 

Flint reports that all interval data have been posted within SDATS.  

Choice of Performance/Impact Metrics 

Flint reports that it is experiencing very little attrition, estimated to be less than or equal to five 

participants in the IHD program to date. There have been no direct follow-up efforts by Flint to 

obtain feedback from participants on the program. However, pending executive review, it is 

Flint’s intention to continue with its existing DLC program and strive to sign up additional 

customers. 

5.3 Corn Belt Cooperatives 

The Corn Belt Cooperatives in Iowa include Corn Belt Power G&T and its members, Calhoun, 

Iowa Lakes, Midland/Humboldt, and Prairie Energy. 

Program Structure and Application Protocols 

The Corn Belt cooperatives are defined as Corn Belt Power Cooperative (Corn Belt), a G&T that 

comprises the member co-ops of Iowa Lakes Electric Cooperative, Midland Power Cooperative 

(now merged with the Humboldt Regional Electric Cooperative (REC)), Boone Valley 

Electric Cooperative, Prairie Energy Cooperative, Franklin Rural Electric Cooperative, Butler 

County Rural Electric Cooperative, Raccoon Valley Electric Cooperative, Calhoun County Rural 

Electric Cooperative, and Grundy County Rural Electric Cooperative. Corn Belt also serves the 

North Iowa Municipal Electric Cooperative Association (NIMECA). The summaries presented 

herein are based on interviews conducted with representatives from Corn Belt, Calhoun, Prairie 

Energy, and Midland, as well as follow-up information from Iowa Lakes. 

Corn Belt administers a DLC program for water heaters, irrigation pumps, and storage heat. Corn 

Belt’s water heater program is nearly 2 years old and is active all year long. Based on co-op 

interviews, there are currently 200 load control switches installed at Midland and 700 switches 

installed at Prairie Energy. The program is ongoing, and the NRECA grant, as a follow-on to a 

pilot program that was in place in 2008 with Iowa Lakes, provided for installation of additional 

switches and the deployment of newer and better technology than the neighboring G&Ts that 

have mature LM programs. Member co-ops cannot ignore the specific demand response 

signals/events. However, customers can call ahead during the holidays or other times when they 

do not wish to be controlled. The members can also work with individual customers to 

deactivate individual switches. The member co-ops report that they do not typically initiate 

independent control events above and beyond those administered by Corn Belt. There were no 

IHDs purchased as part of this program. 

Water heaters are subjected to either full (100%) or partial (duty-cycle) control (e.g., 80%), as 

deemed appropriate. Corn Belt is responsible for projecting when control will begin so as to 
abate peak demand, and control occurs based on that subjective determination. Each month, Corn 

Belt analyzes the previous month and the same month from a year earlier to decide what the 
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control threshold will be for that month. Typically, after the first control event in a given month, 

the system automatically steps in and implements control when demand reaches that level for the 

remainder of the month. However, there are exceptions, constituting manual overrides initiated 

by Corn Belt in the event of long control duration with expected higher loads later in the month. 

There are no limits on the number of events that can be called in a given month. However, the 

strategy taken by Corn Belt has been to cycle units to increase the amount of time that control 

can take place with minimal disruption or customer inconvenience. 

Development of rebate levels was based on neighboring utility practices, some of which have 

been deploying similar programs for more than 20 years. Corn Belt did not want to engage in 

“reinvention” of program parameters that have been deployed successfully elsewhere. 

Given that the program is opt-in, there is diversity in customer presentment and incentive levels 

across the member co-ops. Based on the interviews conducted, the following is a high-level 

summary of customer interaction: 

 For Midland, customers are opt-in and either are part of the water heater discount program 

or, if they have older water heaters, are approached separately (with no discount offered) to 

participate in the program for purely altruistic reasons; 

 For Calhoun, marketing was conducted to members to volunteer” to sign up; this process 

resulted in minimal interest; and 

 For Prairie Energy, its marketing program mirrored Midland, and Prairie reports that the 

program typically is not refused when marketed properly. 

Customers are provided with a discount on the cost of a more expensive water heater in 

exchange for signing up for the program and allowing switches to be installed. The member 

co-ops are tasked with minimizing customer inconvenience. 

Enabling Technologies and Devices 

The Corn Belt program is predicated on a Yukon communication system. A two-way Express 

Com system sends a signal from Corn Belt to the member systems, and the individual member 

co-op Yukon system then sends the downstream signal to member customers. The 

Cooper/Cannon Demand response system serves as the connection between the G&T Yukon 

head end to the distribution co-op Yukon head-end system, and then sends a downstream signal 

to the individual customer switch. The control signal is a power line carrier modulation, sent on 

the power lines to all loads by equipment installed in the co-ops’ substations. The 

aforementioned switches were installed subsequent to the Iowa Lakes pilot as a direct result of 

the NRECA grant. 

Implementation and Operating Issues 

The program’s implementation was driven by the need to abate the Corn Belt peak demand as 

billed by Basin Electric. The demand rate for Corn Belt does not vary seasonally, and the 

member co-ops are billed based on their coincident peak with Corn Belt. Water heating is the 

main end-use that can contribute to peak reduction in all 12 months. Corn Belt did not report any 

specific implementation or operating issues. There were some data compilation/reporting 

challenges, as noted below. 

Data Compilation and Reporting 

Corn Belt’s existing SCADA system provides full load intelligence. Corn Belt can manually 

intervene in the automatic system calls on events, as described above. Corn Belt reports that 



Demand Response – Testing the Theoretical Basis  May 31, 2014 
 

 

–24– 

interval and event data are in the SDATS system. That data currently are being subjected to 

review. Corn Belt will provide its Load Management Operating Manual for review. In addition, 

Corn Belt will provide a tabular history of estimated DLC impacts on monthly peak for the 

duration of the program. Based on interviews conducted, there were some reports of data 

compilation and reporting challenges, as follows: 

 Midland reports that there were some communication issues in getting kWh consumption 

reads in for billing. Midland believes that this problem was related to the operation of 

the PLC. There were also some challenges related to the merger of Humboldt REC and 

Midland, both of which had legacy Yukon systems. 

 Iowa Lakes had similar challenges relating to data quality/transmission issues. Iowa Lakes 

will be compiling an abbreviated data set for analysis that reflects a sample of load over a 2-

year period. 

 Calhoun has had some difficulty with its meter communications and is in the process of 

making improvements to line data repeaters. Calhoun also will be providing a condensed 

data set for analysis. 

Based on the interviews conducted, follow-up is being undertaken to ensure that event data are 

provided in concert with the interval data in SDATS. 

Choice of Performance/Impact Metrics 

Corn Belt reports that there has been no formal tracking of metrics or cost-benefit analysis 

conducted. Corn Belt receives a monthly report from the distribution co-ops on the number of 

switches installed, and estimates monthly impacts based on the control percentage, an assumed 

diversity percentage, and an assumed average kW rating. Because switches can only store data 

for approximately 36 hours, a more manual and continuous process would be necessary to fully 

extract actual event data from the switches. 

Corn Belt does note that, based on customer pushback, the 100% control for the water heater 

program motivated it to adjust the cycle to 80% during control periods. Calhoun notes that there 

are challenges related to program participation when homes are sold to new owners. 

There has been no formal communication plan to solicit feedback on the program or any 

customer surveys conducted. Corn Belt reports virtually no attrition. However, based on the 

interviews conducted, the following is an overview of performance-related feedback from the 

customer perspective: 

 In Midland, a few people have called to express concerns (two calls out of all switches 

installed); one was related to the water heater itself and was unrelated to load control 

performance, and the other was related to a control event; Midland anticipates conducting a 

survey at some point soon, but there is no strict survey timeline. 

 Prairie Energy has 700 switches installed, and only a handful of people complained about 

running out of hot water – some 50-gallon water heaters were moved to a lower-duration 

cycle to conserve hot water. 

 For Calhoun, there were some concerns with the program but they have been very limited. 

Since the switches were deployed recently, in the spring 2014, the program is still in its 

early stages. To the extent that the program is extended to irrigation and storage heat, it will 

be done outside of the current NRECA grant. 
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In the medium term, Corn Belt is prepared to focus on AC and storage heater control. However, 

the individual member co-ops have not taken on these additions at this time. Iowa Lakes already 

has IHDs in place, and other co-ops are considering similar additions. The IHDs display a 

colored signal (green to yellow to red) to signify closeness to a potential peak, which in theory 

entices participants to avoid/delay hot water end-use. Currently, there is no peak pricing 

program. However, a handful of C&I customers do receive a price signal and are on a coincident 

peak rate. It remains to be seen whether such a program would be more widely 

marketed/introduced in the future. 

5.4 Minnesota Valley Electric Cooperative 

Program Structure and Application Protocols 

Minnesota Valley Electric Cooperative (MVEC) has 43,000 customer meters, comprising 36,000 

members spanning very rural to suburban areas. MVEC recently replaced 11,000 one-way LM 

devices with two-way receivers. This investment was helpful in alleviating the non-functional 

receivers, which MVEC estimates represented between 15% and 25% of the older receivers. 

MVEC notes that reliance on hourly data was an unreliable approach for determining which 

receivers were not functioning (as the interval was too long). With the new equipment, MVEC 

can obtain feedback from the load control receivers, making it relatively easy to detect failures. 

MVEC also worked with Great River Energy and Basin Electric on a DR management system 

comprising new head-end software. The intent of the investment was to help abate peak demand 

in the summer, much like a standalone commercial customer. 

The investments made were all a function of buttressing the existing MVEC DR program. This 

program is a DLC structure for AC, water heater control, and battery peak shaving. Water 

heating control occurs at night for peak shaving. AC cycling occurs in the summertime for the 

same reason, generally over the hours of 1–5 p.m. Heating control occurs in the winter, with 

batteries discharged to abate peak on an as-needed basis (typically several times a day). The 

program is permanent and has been in place for 20 years. There are currently 8,500 participants, 

with 8,000 of those having AC control, and the remainder having water heater and space heating 

control. The program is administered on an opt-in basis. There are certain limits to the number of 

events that can be called, as reported by MVEC. 

Participants are provided with a discounted rate on the sub-metered portion of their bills (e.g., 

AC/heat pump). Customers are charged their basic rate for general service. Additionally, 

metered AC customers receive a 10% discount on their overall monthly energy bill. Regarding 

customer presentment and recruitment, MVEC did not engage in any additional recruitment or 

communication of program benefits to existing participants, given that the program has been in 

place for well over 20 years. However, one customer presentment technique that has been in 

place for quite some time relates to an energy savings line item on customer bills that shows 

“zero savings” for non-participants. MVEC also mails out a yearly energy report to bolster 

participation. 

Enabling Technologies and Devices 

The main enabling technology invested in is the aforementioned two-way receivers. The MVEC 

demand response program is operated via a power line communications system (which differs 
from a power line carrier system). The prior radio frequency system signal was intermittent and 

would not work consistently. In addition, MVEC also invested in support software, as described 

above. 
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Implementation and Operating Issues 

MVEC does not report any significant operational or implementation issues. The program was 

implemented 20 years ago to provide rate relief and avoid costly demand charges. MVEC’s bill 

is in part derived from its transmission peak with Great River Energy. The Basin Energy peak 

typically occurs between 1 p.m. and 9 p.m., and is also a billing determinant. 

Data Compilation and Reporting 

MVEC data as compiled in SDATS are currently being subjected to review (as available). 

MVEC reports that data initially uploaded to SDATS were less than optimal, as certain system 

challenges were being addressed. MVEC will be creating a smaller, concise data set for analysis. 

The data will provide identification of program types and include data for non-participants. 

Choice of Performance/Impact Metrics 

As a result of these new investments, MVEC estimates that there has been a 1-MW increase 

in water heater control capacity, and a 10–15% improvement on AC control devices. However, 

MVEC does note that 500 participants quit the program when the initial change out of load 

control receivers was attempted. In addition, between 50 and 100 customers per year are 

estimated to be irritated by AC cycling (out of all participants). 

MVEC currently has plans for increasing its saturation rate, which stands at 46% across all 

current DR programs. MVEC is introducing three new programs—specifically, (1) a Wi-Fi-

enabled EnergyHub device to set back thermostats for up to 4° for 3 hours, up to 7 days per 

month; a (2) a behavioral “beat the energy peak challenge” over the period 5–9 p.m., with 

cash prizes awarded to the winning participant; and (3) a pre-pay option of $5 if the customer 

reduces consumption during the peak, which MVEC reports was received favorably by half of all 

existing participants. 

MVEC reports that it conducts periodic studies of its existing DR portfolio, which helps drive 

the rates associated with the program. The most recent study conducted was in 2011, which 

guarantees program rates through the year 2014. A new study of the program to lock in rates for 

the next cycle may be done at a later point. 

5.5 Delaware County Electric Cooperative 

Program Structure and Application Protocols 

Delaware County Electric Cooperative (DCEC) in New York State has 5,300 meters and 840 

miles of distribution lines. DCEC has a large number of seasonal accounts representing 

vacationers from urban areas of New York, which account for approximately 40% of its 

membership. 

DCEC made a significant investment to buttress its existing DR program, which has been in 
place for 20 years. The program is predominantly focused on water heater control, and DCEC 
reports that AC load is not significant enough to warrant deployment of a DR program. DCEC 
monitors load from its main purchase points in 5-minute periods and projects system demand. 
Dispatch of demand response is controlled via a matrix. Load response/reduction is assessed and 
dispatched based on how much load control is deemed necessary (utilizing the existing Survalent 
SCADA system). The new technology for DLC uses a very low ultra-narrow band form of 
power line carrier, and block timing as a dispatch solution. DCEC merged or integrated the 
old and new systems to maintain the old matrix functionality resident in the SCADA 
programming. DCEC also installed new IHD devices (described further below). 
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Currently, there are 600 participants on a water heater DLC program. Additionally, there are 50 
participants who have an IHD but not directly controlled water heaters. DCEC reports that it 
has very little AC load or other controllable load. There are also 100 participants with no DLC or 
an IHD (this serves as a control group). The DR program is active year round and is intended to 
improve system load factor. The program is administered on an opt-in basis. The program is 
active at any time of the day. Time-supervised demand shedding thresholds are set by the 
Assistant Manager (operator), based on his experience with the operation of DLC with respect to 
historical system demand levels. Typically, shedding is enabled during the historical morning 
and evening peak hours. The operator may also place the DLC system in the shedding mode, if 
needed. Typically, the shedding function is limited to twice per day; however, depending on 
system conditions, no shedding may take place on a daily basis. Durations are generally limited 
to approximately 4 hours in length, depending on the level of shedding needed to meet threshold 
limits. 

Customers are provided with an incentive of $4 per month all year round for participating in the 
DLC program. There is no additional incentive associated with the IHD. Customers were 
recruited for the program via direct mail and newsletter advertisements, in addition to 
mention of the program at the DCEC annual meeting. 

Enabling Technologies and Devices 
In addition to the installation of the new DLC service, DCEC also installed IHDs as enabling 
devices. The IHDs use a ZigBee wireless connection that shows kWh consumption. The 
customer has the ability to select different display parameters in the IHD related to energy 
consumption, including color coding of the display background. 

DCEC engaged in testing the DR system (10 separate tests were run) during the summer of 2013, 
and 10 additional tests in the winter of 2013−2014. 

Implementation and Operating Issues 
DCEC implemented the program to help control the cost of its New York Power Authority 
(NYPA) demand charge for hydro capacity and energy through load factor improvements. 
Furthermore, NYPA goes into the market to purchase energy for DCEC’s load in excess of its 
hydro allocation. This excess or incremental energy is more costly than the hydro-based energy, 
and the need for incremental energy is greatest during the winter period. Managing its load 
factor reduces incremental energy purchases while simultaneously increasing hydro-based energy 
purchases from NYPA to the greatest extent possible. 

DCEC reports that the time it takes to transmit all load shed commands on the new power line 
carrier system, due to its very low transmission data rate, is 45 minutes. The TS 2 system was 
designed primarily for an AMI application, with very limited capabilities for real-time 
applications. 

Data Compilation and Reporting 

DCEC has been reporting hourly load data to NRECA’s Study Data and Asset Tracking System 

(SDATS) based on (1) 100 customers with DLC; (2) 50 customers with an IHD (no overlap with 

DLC); and (3) 100 participants with no DLC or IHD, serving as the control group for 

approximately 1 year. The DCEC SCADA system contains event data related to the percentage 

of load shed in a spreadsheet format. These data are not in SDATs and will be critical to analysis 

of the DCEC data. Other DCEC data currently are under review. DCEC reports that it used one 

feeder (representing approximately 384 customers) and dumped 6 months of hourly data into the 

SDATS system prior to the inception of the DLC and the IHD installations as a trial operation of 

the newly installed AMI system.  
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Choice of Performance/Impact Metrics 

DCEC reports that it has saved approximately $50,000−$60,000 over a 10-month period as a 

result of the investment. To track program performance, a formal questionnaire was sent out to 

IHD customers. DCEC received 34 survey responses. Feedback on ease and usefulness of the 

IHD was generally favorable. 

While there has been no formal follow-up to obtain feedback on the new investments within the 

program, DCEC reports that there has been some very limited attrition as a result of certain 

customers needing to ensure proper water temperature for downstream end-uses. Some dairy 

farms reportedly dropped out of the program due to water temperature problems in their 

production process. It should be noted that there are not a significant number of farm accounts, 

and this distinction is not captured in the data reported to SDATS (as this is not anticipated to 

have a significant impact from an analytical perspective). 

DCEC does not conduct any formal cost-benefit analysis on the program or tracking of 

benefit-cost ratios. Deployment of the program was based on the perception that water heating as 

an end-use would result in the biggest DR capability. DCEC does estimate its demand savings 

and load factor improvements on a monthly basis. 

6.0 Review of Available Program Data 

6.1 Study Data and Asset Tracking System (SDATS) 

SDATS is a web-based central data repository system developed to collect both asset and study 

data and reports in a timely fashion, enabling efficient DOE reporting and program analysis. 

Project data collected in SDATS consist of the procurement, receipt, installation, and experiential 

information (“Asset Data”) for all assets with a value greater than $5,000 procured through the 

NRECA SGDP. It also includes the build, impact, and baseline data (“Study Data”) that are used 

for cost-benefit analyses by the NRECA study team and DOE. Study data are broken down 

further into “low-frequency” and “high-frequency” data. Low-frequency data are entered through 

a web interface called the SDATS. High-frequency data, such as meter interval and SCADA 

data, are uploaded by co-ops to a secure file upload site. 

6.2 SDATS Data 

We have carefully reviewed the following required groups of data within SDATS to be used for 

the proposed statistical and econometric analyses. 

 Customer Systems Build Metric Data 

 AMI and Customer Systems Impact Metric Data 

 Meter Location Data 

 Meter Interval Data 

 DR Event Data 

6.2.1 Customer Systems Build Metric Data 

These metrics represent the number of installations of various customer system devices, such as 

in-home displays, web portals, DLC devices, smart appliances, programmable controllable 

thermostats, home area networks, and energy management devices, both at project and system 

levels. We extracted these data from a recent build metric report (Q2-2013) from SDATS. Data 

have been thoroughly reviewed and found to be in good condition, with no major data anomalies. 
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6.2.2 AMI and Customer Systems Impact Metric Data 

These metrics reflect system impacts and benefits due to the installation of AMI and customer 

systems. A number of these metrics and associated data are relevant to the proposed statistical 

and econometric analyses, such as co-op coincident/system peaks. Some of the required data 

have been collected from recent semiannual reports (H1-2013) from each co-op and reviewed for 

data completeness. However, some co-ops missed reporting certain fields of required information 

in their reports. Supplemental data was requested by the co-ops for analytical purposes and is 

detailed further below. 

6.2.3 Meter Location Data 

These data contain various attributes of individual meters (meter locations), such as meter 

identification number; customer identification number; installation date; in-service date; feeder 

identification number; customer class; data acquiring frequency; data polling frequency; flags to 

indicate different features of meters, such as power quality monitoring, tamper detection, remote 

disconnect, etc.; and flags to indicate the participation in specific DR programs, such as IHDs, 

DLC for water heaters, DLC for ACs, web portal access, programmable controllable thermostats. 

Available meter location data for each co-op were collected and reviewed. There are some data 

anomalies, explained in detail in the next sub-section. 

6.2.4 Meter Interval Data 

These data contain different intervals of meter reading (kWh) data with date and time stamp. An 

exhaustive review of data available from SDATS revealed several data anomalies, explained in 

detail in the next sub-section. Table 3 lists high-level stats of meter interval data extraction from 

SDATS for those co-ops reporting. 

Table 3. Statistics of Meter Location and Interval Data Extraction from SDATS 

 

Meter Location Data Meter Interval Data 
    

Number of Meters Number of Records Interval Duration 
Calhoun Co. ECA, IA 1,844 Approx. 5000 Monthly May-12 to Jun-12 

Clarke EC, Inc., IA 12,394 Approx. 2.5 Million 5 min, 15 min, 

and Hourly 

Mar-12 to Dec-12 

Delaware County EC, NY 617 Approx. 2.7 Million Hourly Jan-12 to Mar-13 

Delta Montrose EA, CO No Data No Data No Data No Data 

Flint EMC, GA 59,690 Approx. 8.7 Million Daily Aug-11 to Mar-12 

Humboldt REC 

(Midland), IA 

2,037 Approx. 8.0 Million Hourly Jan-12 to Sep-12 

Iowa Lakes EC, IA 9,655 Approx. 133 Thousand Daily Jan-12 to Jun-12 

Owen EC, Inc., KY No Data No Data No Data No Data 

Prairie Energy Co-op, IA 4,993 Approx. 17.7 Million Hourly Jan-12 to Sep-12 

MVEC, MN 42,541 Approx. 24.1 Million Hourly Mar-12 to Aug-12 

 

6.2.5 DR Event Data 

These data contain DR event information, such as start of the event date/time stamp, end of the 

event date/time stamp, anticipated kW demand reduction, and actual kW demand reduction. Most 

co-ops have not reported these data in SDATS, and we are working directly with them and in 

some cases, their G&T, to request the data.  
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6.3 Data Quality Issues 

As shown in Table 3, the extent and amount of data received across the co-ops varies and, 

importantly, the apparent quality or reasonableness of the data also varies. 

6.3.1 Meter Location Data 

The meter location data generally were understandable and useful. However, there were limited 

instances of apparent confusion regarding the fields that were intended to capture participation in 

DR programs. In a couple of instances, data were incorrectly entered and either reflected no 

participation in programs or the use of additional equipment (e.g., IHDs, PCT) not actually 

installed. 

6.3.2 Customer Load Data 

The following are the primary data quality issues impacting usefulness of the load data: 

 A few co-ops uploaded data of only a daily or monthly frequency, which is not very useful 

for analysis of impacts on load profiles or energy consumption due to DR events. 

 One co-op uploaded data that appear to represent daily cumulative meter readings rather 

than interval reads. While it seems likely that these values could simply be subtracted to 

yield the daily interval kWh, it was never resolved what the data actually represented, and 

there were a considerable number of missing data points. However, as discussed below, the 

co-op in question agreed to work on providing a new data set. 

 Due to the limitations of the AMI system, some hourly load data were in whole numbers, 

which yield insufficient variation across many hours for the typical residential and small 

commercial customers, the loads of which are frequently less than 1 kW. 

 For most of the co-ops that did provide hourly customer profile data, the data include 

numerous instances of potentially erroneous zero load intervals and anomalous spikes, as 

well as missing values. 

It appears that many co-ops experienced data transmission issues over PLC communication 

systems, particularly early in the deployment of AMI equipment, which tends to cause missing 

and anomalous readings to be captured in the downstream systems. Issues such as line noise are 

also likely culprits in these cases. One of the co-ops reported that bandwidth was insufficient to 

transmit the load profile data, and that it was difficult at times simply to capture the consumption 

readings used for billing purposes. One of the co-ops reported that its communication issues were 

improved by the installation of additional repeaters along the distribution lines, although for 

many co-ops, it appears that data transmission from the substations back to the master station was 

also a problem. 

In our experience, these sorts of communication issues are common to PLC systems and require 

the ongoing attention of an experienced operator of the equipment to monitor data feeds, ensure 

complete coverage on an ongoing basis, and engage in frequent re-uploading of anomalous data 

points. It is likely that co-op staff was stretched to afford this kind of attention and would require 

ongoing feedback on data review to engage in a secondary uploading process. 

It also was noted that some co-ops, in consultation with NRECA, suspended uploading data to 

SDATS because of these data issues. 
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6.3.3 Conclusions 

Calls were made to each co-op for which data 

quality issues or missing data were evident. 

Participating co-ops compiled additional data 

deemed useful in the study of the success of 

their DR programs. We received additional 

event data across the co-ops, as well as 

samples of customer load profile data from 

which to ascertain the tractability of formats 

and engage in a larger-scale compilation of 

customer load profile data. For at least one of 

the co-ops, the load profile collection 

capability of meters was disabled at some 

point, so no profile data can be captured from 

historical periods up to this point. The 

remaining sections of this report summarize 

the objectives, approach, and results of our 

detailed econometric analysis of all available 

co-op data. 

7.0 Statistical and Econometric Analyses of Cooperative DR Program Data – 

Testing the Theoretical Basis for Demand Response 

7.1 Testing the Theoretical Basis for Demand Response—Overview of Analysis 

Objectives 

The theoretical basis for DR programs is a function of several commonly accepted assumptions. 

(1) It is assumed that a utility can engage in load control events over a period of time that aligns 

with its system or wholesale billing peak, thereby saving the utility and its customers money on 

costly wholesale peaking purchases. (2) The impact of a given load control event in kW 

reductions represents a significant reduction, typically based on general rules of thumb regarding 

appliance peak load and diversity, and the extent of control cycling. (3) A DR program can be 

administered in a cost-effective manner, in that the cost of abatement (infrastructure capital cost, 

participant incentives, and ongoing administrative costs) is less than the cost of otherwise having 

to meet that demand with traditional generating resources. The effectiveness of the program also 

rests on the premise that any “rebound” in load in periods succeeding or preceding the load 

control event do not cancel out savings gained during the period of control, and that targeting 

larger customers leads to larger returns (i.e., the best “bang for the buck” for demand response is 

generally achieved by targeting large customers). 

This study utilized econometric analysis (described further in Section 7.2) to test a subset of 

these premises. By gathering empirical data in the form of hourly loads from participating co-ops 

and conducting analytical tests, the theories above are allowed to “confront” the data, so that it 

can be determined whether they are supported either fully or partially in real-world deployments. 

Although certain of the above premises may be obvious in a theoretical context, they are 

anything but obvious in practice. Obtaining objective estimates of abatement and evaluating 

theories provides significant value in terms of future investment decisions related to demand 

Appendix A contains a detailed description of 

our proposed DR Planning Model, including an 

overview of types of programs covered, inputs, 

and outputs. This model and associated analysis 

process represent a simple yet complete method 

for estimating the value of deploying various DR 

program types at cooperative utilities. Only a 

portion of the data needed to fully populate the 

model was available from co-op DR 

deployments. Therefore, our goal is to leverage 

the data available to the greatest extent possible 

and subsequently identify additional data 

needed to fully build out a complete DR 

Planning Model that supports analyses of all 

relevant DR types and is empirically driven. 
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response. Such decisions can be made based on empirical evidence instead of theoretical 
assumptions that may or may not be supported by the data.  
Table 4 provides a summary of the key research questions underpinning the theoretical basis for 
demand response, giving a high-level overview of which analysis objectives were covered in the 
study and the approach to achieving each research objective. 

 
Table 4. Summary of Research Objectives 

Research Question 
Within Scope 
of Analysis? 

Analytical Approach 
   

Are load control events called during 
appropriate peak period times? 

Yes Compare duration of load control event data to peak 
timing data (where available). 

Are load control kW reductions statistically 
significant? 

Yes Perform econometric analysis on hourly meter data 
from participating co-ops, controlling for hourly and 
weather variation. 

Are there any significant load rebound 
effects either before or after the period of 
load control? 

Yes Examine leading or trailing edge hours in the 
econometric analysis for statistically significant and 
positive parameters. 

Are full cycling and/or a focus on larger 
customers warranted as a function of larger 
abatement gains? 

Yes Conduct econometric analysis on isolated meters 
that are larger than average; conduct tests of 
variables that measure the percentage of load cycled 
(where data are available). 

Are demand response programs cost-
effective? 

No Refer to Section 10 below and Appendix A for a full 
description of a proposed DR screening tool that 
would address this question. 

 

 
7.2 Analytical Approach and Data Sources 
As mentioned above, econometric models were developed to estimate the parameters of interest. 
The primary functional form of the theoretical equation for these types of analyses is typically as 
follows: 

ln Yi,t = α + β1 ln X1i,t + β2 ln X2i,t + … + Bn ln Xni,t + Єi.t 

Where, 

Yi,t – The load characteristic of interest for customer i and day t 
Xni,t – Explanatory variables for customer i and day t (discussed below) 

α , βn – Parameters to be estimated via regression 
Єi,t – The amount of error in the equation’s estimate of Yt 

As the data analyzed generally comprised customer loads and characteristics by customer and by 
day, they conform to what commonly are referred to as “panel data.” Fixed effects panel estimation 
was the primary form of analysis conducted on each co-op’s data set. 
The econometric analyses attempted to explain variations in customer loads during DR events relative 
to loads for other hours/days, and as a function of a series of explanatory, or independent variables. 
The dependent variable, or variable explained in these analyses, was the customer load during the DR 
event. This approach leveraged as many attributes of the programs and technologies as possible. 
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Explanatory variables typically include those regarding the relevant electric rates (for dynamic pricing 

programs), customer attributes, event conditions, and weather conditions. The set of available 

explanatory variables initially contemplated was the following: 

 Ratio of on- to off-peak electric rates (for dynamic pricing programs) 

 Installation of “enabling technologies,” or devices to assist the customer in awareness of DR 

events or reacting to events (e.g., IHD, programmable communicating thermostat, text alerts, 

etc.) 

 Installation of AC and/or electric heat 

 Installation of other appliances (e.g., electric water heating) 

 Daily weather conditions (maximum temperature, temperature-humidity index, and/or 

preceding day maximum temperature) 

 Seasonal variables (e.g., month of year) 

 Day-type variables (e.g., day of week) 

In practice, the set of possible explanatory variables initially contemplated as control variables 

was larger than what actually was available from the co-op data. As these were all direct control 

programs, there were no pricing-related parameters, and as no data were available regarding 

customer characteristics outside of program participation, the equations tended to be relatively 

sparse as to explanatory variables. The primary parameter of interest was a simple binary 

variable defining the control event, typically controlling for participation in the applicable 

program by combining the control event and participation binaries into a single binary variable. 

These equations sometimes were supplemented by equations specific to participant groups and 

even individual meters, for testing purposes. 

Leidos compiled meter and event data from the subset of co-ops. Data were available for highly 

disparate periods and stretches of time across the co-ops. Generally, we were able to capture 

sufficient overlap between the meter data and the event data to test for event impacts, but there 

were significant periods of meter and/or event data for which overlap between the two was not 

available. 

We supplemented these data with weather data from a nearby weather station, both to control for 

weather variation—where the appliance subject to control was not significantly weather sensitive 

(e.g., water heating), and to capture the impact of weather variation on the controlled load—

where the appliance was highly weather sensitive (e.g., air conditioning). Data collected included 

daily high and low temperature, humidity, and precipitation. High and low temperature data were 

used to derive daily heating and cooling degree days,
16

 which was the primary weather variable 

utilized in the analysis. 

The analysis process was inherently iterative, with varying combinations of explanatory factors 

being posed, estimated, and reviewed for explanatory power and statistical validity as compared to 

other combinations. Once the best combination of explanatory variables and their estimated 

parameters was ascertained, the econometric model for a given co-op was finalized. As necessary and 

in alignment with the objectives listed in Section 7.1 above, alternative models were created to address 

differing research objectives, which are summarized in Section 8 below.  

                                                 
16

 Heating and cooling degree days are standardized measures of weather deviations in daily average temperature 

from a base, typically 65°F, summed over any period of interest. Heating degree days represent cool weather, and 

cooling degree days represent warm weather. 
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8.0 Statistical and Econometric Analysis Results 

The methodology described above was applied to the subset of participating co-ops that we were 

able to engage and that provided complementary and/or supplemental data relative to data 

contained in SDATS.  

8.1 Summary of Findings 

The tables below capture estimated parameters, which represent the average kW savings that can 

be expected on a per-participant basis during a load management event, for hours during which 

LM events tended to occur across the co-ops, as well as hours viewed as being in the critical 

period of likely significant impacts due to higher coincidence of consumption for the end-uses in 

question. The tables are organized by the type of control program, with Table 5 providing an 

overview of estimated impacts of water heater control programs and Table 6 providing impacts 

of AC control programs. To the extent that a given hour was not within the control period of the 

co-op in that row or was otherwise not captured in the analysis, that cell is grayed out. To the 

extent that a co-op did not engage in a particular load control program, that entity is not shown in 

the table. Table 7 shows the combined impacts for AC and water heating programs—for some 

co-ops, all participants were in both programs, so the impacts of water heater and AC programs 

could not be determined separately. To the extent that no significant impact associated with load 

control was estimated for a particular hour or overall, “N/S” is shown in that particular table 

element. 

Table 5. DLC Event Estimated kW Impacts—Water Heater Programs 

Cooperative 

# of 

Meters 

# of 

Events Overall 

Hour Ending 
 

7 a.m. 8 a.m. 9 a.m. 4 p.m. 5 p.m. 6 p.m. 7 p.m. 

Clarke 80 7 -0.1     N/S -0.2 N/S 

DCEC 254 27 N/S 0.2
17

 -0.2 -0.1    -0.4 

ILEC 317 97 -0.2 N/S -0.3 N/S   -0.4 -0.6 

PEC 530 372 N/S N/S 0.4 N/S -0.1 N/S N/S 0.2 

Table 6. DLC Event Estimated kW Impacts—AC Programs 

Cooperative 

# of 

Meters 

# of 

Events Overall 

Hour Ending 
 

3 p.m. 4 p.m. 5 p.m. 6 p.m. 7 p.m. 8 p.m. 

Clarke 80 7 -0.2   -0.3 -0.3 -0.1  

Table 7. DLC Event Estimated kW Impacts—Combined AC & Water Heater Programs 

Cooperative 

# of 

Meters 

# of 

Events Overall 

Hour Ending 
 

2 p.m. 3 p.m. 4 p.m. 5 p.m. 6 p.m. 7 p.m. 

FEMC 500 2 0.117  -0.2 -0.1 N/S 0.1 0.5 

MVEC 190 15 -0.2  -0.3 -0.2 -0.2 -0.3  

 

 

                                                 
17

 Parameter is positive and significant. It is reported herein for completeness and likely is due either to higher 

overall load levels during that period that tend to crowd out the impact of the LM event, a load “rebound” effect (as 

described above), or to bias due to an omitted variable that cannot be measured. 
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It is important to note that some of the parameters in Tables 5, 6, and 7 may be positive. These 

parameters are reported for completeness and generally are driven from (1) higher overall load 

levels during that period that tend to crowd out the impact of the LM event (control periods and 

groups notwithstanding); (2) omitted variable bias that may impact the precision of the parameter 

estimates; or (3) to the extent that the hour falls along the edge of a load control event in an 

adjacent hour, some amount of load “rebound” due to the adjustment of load, resulting from 

control/cycling in surrounding hours. 

It is also important to note that in most cases, control groups (or meters that were not participants 

in a given DR program) were available. In addition, every day of meter data for a control group 

that was not a load control event day was effectively used to estimate a load “baseline ,” or the 

amount of kW that could be expected (which would vary based on hourly variables inserted into 

the model to control for per-hour variation). If the variable or variables that isolated load control 

events or other thresholds were statistically significant, they were found to be so over and above 

baseline control variables. As mentioned above, these baseline control variables included hour-

of-the-day and weather variables designed to control for weather-induced variation that is 

separate from variation due to load control. 

To aid in the interpretation of the data above and the data upon which they are based, Figure 4 

below provides a comparison of hourly loads for control and non-control days averaged across 

all participating customers for Clarke Electric Cooperative. Average load data shown reflect 

approximately 60 meters over 7 control days and 21 non-control days with similar climate 

conditions.
18

 As shown below, the control days exhibit lower load levels in the key load control 

hours to some degree, most notably the hours ending 17, 18, and 19, with some load rebound 

evident in the hours ending 20 through 24. In addition, higher loads are also evident in the hours 

preceding the event, presumably illustrating customers being familiar with the control parameters 

and perhaps pre-cooling the home heading into a control event. For the purposes of this figure, 

the non-control days are isolated to similar temperature days and participating customers to 

produce a useful baseline reflecting similar cooling requirements and customers with air 

conditioning (non-participating customers may not have air conditioning). 

                                                 
18

 As mentioned previously, the summer portion of Clarke’s load management pilot reflected control events on every 

other day meeting certain temperature thresholds (on a forecasted basis) during summer months and a requirement 

for participants to have central air conditioning. 
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Figure 4. Comparison of Control vs. Non-Control Days with Similar Weather Conditions  

The subsections below capture cooperative-specific program details and associated findings to 

provide more information regarding the numerical results and highlight key challenges 

associated with the analysis of each co-op’s data, including thresholds required to generate 

significant findings (either through isolation of particular groups or compartmentalization of 

certain tiers of kW readings, as applicable). 

8.1.1 Clarke Electric Cooperative  

The Clarke data included 80 meters: 43 were participants in the AC control program only, 22 

were in the water heater control program only, and 15 were in both programs. Accordingly, there 

were no non-participating customers. Control events during 2013, the only year for which data 

were provided, totaled seven events. As the control events were triggered by particular weather 

events on every other instance of such weather events, there were the same number of non-

control days with similar weather conditions, which were included in the analysis as a baseline. 

There were numerous duplicate meter data observations, which were removed from the data set 

prior to analysis. Clarke meter data exhibited anomalous spikes in the loads of several meters, 

which were excluded from certain equation specifications to ensure that these potentially 

erroneous observations were not impacting the results.  

Overall, impacts of load management were statistically significant, particularly for hours the 

ending 5 p.m. and 6 p.m. LM impacts were more significant upon isolating the data set for 

customers that were participating in either the water heater or AC program (i.e., using the non-

control days as the only baseline rather than non-participating customers). It is possible that the 

perfect correlation between the coincident water heater and AC control events made it 
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impossible for the statistics software to separate out the impacts of these programs. It is also 

possible that the effective baseline of non-control days for participating customers was more 

effective at isolating the control impact than the cross-sectional differences across non-

participating customers (both those not participating in the particular program or in either 

program). In addition, there was evidence of both a statistically significant load rebound 

subsequent to the control period (as much as three hours after the control period) and higher 

loads in the hour preceding control periods, presumably due to pre-cooling of the home based on 

participant experience with the control program on preceding control days. These positive 

impacts in the hours surrounding the control period are readily visible in Figure 4 above. 

8.1.2 Flint 

FEMC meter data included more than 500 accounts; approximately 130 were in each of the 

following groups: 

 Standard water heater and AC load control program 

 Water heater and AC control program with notification of events via an IHD 

 Water heater and AC control program with e-mail and text notification of events 

 Baseline group with no load control 

In August 2013, there were two load control events, spanning 3–7 p.m. 

The hourly data available for Flint was reviewed and generally found to be reasonable. To ensure 

that empty cells or zero meter reads did not have an undue influence on our analysis, we 

generated an adjusted hourly meter read data set that excluded missing or “0” fields. This nuance 

did not appear to have a significant impact on the findings. 

The data available for analysis for Flint was limited to the afternoon and evening hours, which 

makes it more difficult to find sufficient variation across the various groups and presents some 

econometric challenges when attempting to isolate hours and certain groupings. These challenges 

notwithstanding, the analysis reflects the following: 

 During certain key hours and for certain key ranges of kW reads, most notably the 

customers that are larger than 13 kW, LM events were found to have a statistically 

significant impact on load. 

 We have experimented with various combinations of isolated hours to determine how the 

threshold constraint changes the results; in general, the impacts of LM events are less 

significant for the smaller domain of kW readings, but become increasingly significant as 

the hour approaches 19 (7 p.m.) and the kW ratings are above 13. 

 The above analysis suggests that, during evening peak periods, the program is having a 

statistically significant impact on the range of possible peak hours. The results shown in 

Table 7 reflect that generally, there was a statistically significant and perceptible abatement 

impact in the early hours of combined control when all kW reads for all meters were 

analyzed in one model.  

8.1.3 Iowa Lakes 

ILEC meter load and control event data spanned October–December 2013. Meter load data 

included approximately 300 meters, all of which were participants in the water heater control 

program.  

Load control events totaled nearly 100, although days during which there was control included as 

many as 4–5 events, many of them in nearby time intervals. The periods of control were across 
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many hours but were most heavily focused in the early morning (hours ending 7 a.m. and 8 a.m.) 

and early evening hours (hours ending 6 p.m. and 7 p.m.). There were multiple control events for 

various groupings of water heaters, specified as “primary,” “secondary,” and “tertiary.” For 

purposes of this analysis, only the primary water heater control events were analyzed. 

The meter data included many meters with highly volatile and potentially anomalous load 

patterns. For purposes of the results provided in the tables above, 12 accounts were excluded 

from the analysis due to potentially erroneous data. 

As evidenced by the results tables, statistically significant impacts of load control events were 

found in several daytime and evening hours, as well as overall, across all hours. 

8.1.4 Prairie 

The Prairie data set was generally reasonable. Initial econometric analysis was halted to 

investigate bracketed meter reads subsequently found to be separately metered heating load. 

After this investigation, those observations were excluded from the data set, and the econometric 

analysis was refreshed. Exclusion of the separate meters resulted in parameters for abatement 

that generally were larger and more in alignment with expectations. Based on the revised 

analysis, the following represent some overarching findings relative to the data set: 

 The impact of load control over the aggregated hourly period was not statistically 

significant. 

 Water heater participants, in certain isolated hours, did not have statistically significant 

amounts of abatement.  

 The hours found to be statistically significant as to control periods were not necessarily 

bounded within the domain of hours that would be considered typical peak or control 

periods. (A possible exception is 8 p.m., which reflects hour 21, given the manner in which 

the time stamps for the data set were structured.) 

 As evidenced by Table 5, some amount of statistically significant rebound impacts were also 

found in certain hours. 

 The data were spliced in an effort to understand whether generally larger kW readings were 

subject to larger incremental abatement estimates. For the hours in question, load control 

events that align with meter reads of 10 kW or less generally were found to have a lower 

abatement impact than the estimated impact over the entire data set.  

8.1.5 Minnesota Valley Electric Cooperative 

For MVEC, the econometric data translation process that converts the data set into a dated panel 

for analysis initially identified some duplicated meter stamps and time stamps, which was 

believed to indicate that there were duplicates in the data set (same meter ID and same time 

stamp more than once). This prevented the software from doing a full panel translation and, as an 

alternative, "cell IDs" were created to ensure that each cross-sectional element was unique. The 

focus of our analysis was on the cycling of AC units; the “dual-fuel” meter reads were excluded 

from the analysis. Data were available for both the participation of a given meter and the 

percentage associated with the cycling of the end-use. 

Leidos engaged in a more thorough data review and uncovered that the duplicate records were 

caused by a lack of precision in certain isolated time stamps, wherein the hour in question was 

not being read properly by our statistics software. We adjusted the format of the raw data and 

replicated our earlier analysis with a full panel data set to ensure the consistency of the findings. 
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The key findings associated with the MVEC data set are as follows: 

 When kW readings were in the smaller range (less than 2 kW in a given hour) and during 

key hours in which LM events took place, there was a small and statistically significant 

impact associated with abatement. 

 Weather data, including maximum and minimum temperatures and heating and cooling 

degree days, were included in the analysis, and cooling degree days in particular worked to 

control some of the weather-related variation in the data, after which LM participation was 

found to be statistically significant. In models that capture either temperature or degree day 

measures, the omitted variable bias associated with estimates that may not reflect control for 

sources of weather variation was considerably lower. 

 The level of participation appears to matter—and generally in the expected direction (i.e., 

only load management percentages greater than 0.5 were statistically significant). 

8.1.6 Delaware County Electric Cooperative 

DCEC meter data spanned approximately January through July 2013, excluding March 2013, 

while the event data were available only for March through mid-April 2013. Another 10 tests 

were run during the winter of 2013−2014, starting on November 24, 2013 and ending on 

February 10, 2014. The meter data reflected consumption readings in whole kW, with the 

majority of readings of either 0 or 1 kW, reflecting rounding of readings to the nearest kW and 

an overall lack of precision (i.e., no difference between 0.1 kW and 0.4 kW or between 0.5 kW 

and 0.99 kW). The 27 control events were concentrated in the morning, from the hour ending 7 

a.m. to noon and the evening, from the hour ending 7 p.m. to as late as 11 p.m., frequently 

occurring in both morning and evening hours on the same day. The data set was populated with 

“LM_XX” variables that captured specific events, as well as “LM_YY” variables that captured 

participation across various retail groups (e.g., farms). While this additional information was 

tested to determine the possibility of discerning differences in participation across groupings, 

there was no significant difference between the central variable that controlled for LM events 

and the other variables. This is likely to be driven in part by the lack of precision in the 

underlying kW reads. 

Statistically significant impacts of LM events were sparse and typically not significant across the 

hours of control. Hours that were statistically significant tended to be focused around the typical 

periods of hot water usage in households, in the mid-morning and early evening hours, as shown 

in Table 4 above. It is likely that the lack of precision of the meter data, along with the more 

typical data vagaries across the co-op data sets, limited the ability of the statistics software to 

detect load differences. 

8.1.7 Overall Findings – Insights on the Theoretical Basis for DR  

Based on the overall set of analyses completed by co-op, the following are some overarching 

themes regarding the findings, which represent high-level insights on certain theoretical bases for 

demand response as detailed in Section 7: 

1. Load control events, when initiated, do result in statistically significant impacts for hours in 

which it is reasonable to anticipate a utility will peak. These impacts generally are in the 

same range for per-device, per-event kW savings across the entities in the analysis. 

2. When the data for meters that had larger average kW readings were analyzed separately, 

there were larger statistically significant amounts of abatement. This is in general 

alignment with theoretical expectations, in that larger meters and larger customers are more 
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likely to achieve tangible reductions in load (i.e., reductions that can be teased out of the 

data) from load control programs. 

3. Full control or cycling, or event criteria that generally cycle to a greater degree were found 

to be statistically significant in terms of abatement of kW. This suggests that partial cycling 

may be less effective at obtaining significant levels of abatement, and is in alignment with 

theoretical expectations. 

4. There was a statistically significant rebound effect identified in certain co-op’s models. 

5. Weather data were extremely useful for controlling for variation when developing 

estimates of abatement and controlling for the impact of weather variation and the reduced 

parameter bias that results from models carefully infusing weather data into the analysis. 

Demand Response Program Success in Abating Peaks 

The value of a load control program lies in the utility’s ability to control load during peak load 

hours—either the utility itself or its wholesale provider, if its demand charges are based on a 

coincident peak. This is due to the fact that capacity costs are driven from the utility’s peak 

demand value, whether directly through a wholesale power supply contract or indirectly through 

generation assets built to meet a previously forecasted peak demand. In addition, capacity costs 

are driven by electricity demand during relatively few hours. Consequently, abatement that does 

not align with the utility peak or coincident peak provides only avoided energy cost, but no 

avoided demand cost.  

Load control needs to occur in a sufficient number of hours to provide assurance of actually 

abating the utility’s peak demand or the wholesale demand billing hour. However, the number of 

load control events cannot be unbounded, as frequent disruption of end-user comfort likely will 

lead to program participant attrition. Control cycling of less than 100% during control hours 

reduces this disruption considerably but also reduces the overall abatement. 

To properly evaluate the economics of a load control program, this imperfection in the alignment 

of control events and peak load events should be taken into account. The reality is that peak 

periods cannot be forecasted with perfect accuracy, and the success of load control event timing 

typically is not known until well after the fact. In cases of wholesale power supply contracts for 

which monthly demand costs are driven by a single coincident peak hour (or annual demand 

costs, over a few summer months), capturing the full demand abatement benefits typically 

requires fewer hours of control. This proposition can be complicated by cases in which a host of 

the supplying utility’s other wholesale customers also are “chasing” the peak.  

In an effort to determine the co-ops’ success at controlling loads during peak load periods, 

Leidos requested peak timing data from our contacts for the period overlapping the deployment 

of the load control program in question, at a minimum, or additional data, if available. Data 

regarding the timing of peak load events were available for three co-ops, DCEC, MVEC, and 

PEC. Data also were available on peak timing for Basin Electric Cooperative during 2012 and 

most of 2013, which were provided by Corn Belt Power Cooperative, and represent the basis for 

wholesale demand billing for the Corn Belt co-ops, including PEC. Of the 26 total peak events 

taken from these data, load control was called during 19, or 73%, of them. While Flint provided 

data regarding its top 10 load hours for 2013, they were not exactly comparable to data from the 

other co-ops, and it appeared likely that load control event data were not sufficiently available 

for this purpose. As PEC provided the longest time series of both monthly peak demand and 

control events, these data are most representative of that co-op and, in essence, of the Corn Belt 
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Power Cooperative—Corn Belt Power Cooperative initiates load control events. The data show 

that control events were successful at hitting the majority of peak events. However, as noted in 

the discussion of the econometric analysis of customer loads, statistically significant impacts on 

customer loads were found during only a subset of control event hours. 

It is important to note that, while on the surface, comparing the recorded peak to the domain of 

load control events is one indicator of the possible success of a load control program, it is 

entirely possible that engaging in load control for a given hour actually reduced demand in an 

hour that otherwise would have been the actual peak. To more fully test whether a given 

program’s control events matched the hypothetical peak that would have occurred absent the 

load control, it would be necessary to “gross-up” the relevant hourly load profile based on hourly 

estimated impacts. These hourly load data were not requested from the participating co-ops and, 

for the Corn Belt co-ops, could not be obtained from the wholesale provider in question, whose 

loads also would have been impacted by other wholesale customers engaging in load 

management. Such an analysis was beyond the scope of this project. 

The results of our review suggest that the majority of the peak events analyzed were covered by 

load control. However, a key consideration, because only a subset of the control event hours was 

found to contain a statistically significant impact, is this: the analysis suggests that utilities 

should take care to include conservative estimates of abatement in any future cost-benefit 

analyses. Such estimates should capture discounting factors to account for the peak demand 

coincidence of the abatement and other net-to-gross factors that result in lower actual estimates 

of abatement, compared to theoretical rules of thumb or engineering-based estimates of end-use 

loads. 

9.0 Observed Data Challenges and Issues—Econometric Analysis 

In prior sections of the report, we summarized challenges regarding the collection, manipulation, 

and amalgamation of data for purposes of rendering those data suitable for econometric analysis. 

In addition to these, we uncovered other data challenges and issues after the onset of the 

econometric analysis. Given the large volume of data and the somewhat disparate nature of the 

control event data available, Leidos went through a secondary quality control process as the data 

were being subjected to initial specifications within Eviews and as part of the development of 

panel data sets (described in prior sections of this report) within Eviews. 

The following is a list of the additional challenges encountered during the econometric analysis: 

 Event data for several co-ops were not in the desired format required by the analysis. We 

had to simplify the data to bring them to the desired format and subsequently created other 

threshold variables within Eviews as deemed appropriate. 

 In one co-op’s data set, a few of the MeterIDs had a special character (bracket “[]”) along 

with a numeric meter number that was discovered when attempting to create the panel data 

set within Eviews. After discussion with the co-op member, we realized that the brackets 

represent separate metering for heating. These separate meters were excluded from the 

analysis. 

 Some co-ops’ data sets had duplicate meter reading entries with different kW values for a 

similar MeterID and DateTime stamp. We had to remove these entries to create a consistent 
data set for the analysis. 

 Some co-ops’ meter reading data had zero values for the kW field. It was difficult to find 

out whether the zero values are actual kW or rounded-off values because some co-ops’ 
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meter data management systems round off the kWh readings to the nearest integer values or 

simply are not capable of capturing double precision values. To address the potential impact 

of this nuance on the analysis, we generated adjusted kW time series that excluded zero 

values, and ran the analysis using both data sets. As noted above, this nuance does not 

appear to have any impact on our findings, which is mostly due to the volume of 

observations in any given equation. 

10.0 Nexus between Analysis Results and DR Screening Tool 

The econometric analysis conducted in this project is a critical element of the Leidos vision for a 

Demand Response Planning Model, which is described in extensive detail in Appendix A. 

Figure 5 provides a more high-level overview of the key components of the screening tool 

architecture. 

 
Figure 5. Top-Level Demand Response Planning Model Architecture  

 

The econometric analysis conducted in this project provides (or can be manipulated to provide) 

the following critical assumptions to the planning model: 

 If all else is equal, the per-unit, per-event, hourly kW abatement for a variety of load control 

programs, either in aggregate (for all hours), or for specific hours. 

 Details on which hours can be assumed to be statistically significant, in general, or based on 

the specific portfolio involved, which can inform assumptions that vary based on the type of 

program assessed and the range of hours over which load control events are anticipated to 

be initiated by the utility involved. 

 The likelihood that load control events resulting in statistically significant impacts align 

with utility peaks, which can inform discounting factors associated with peak coincidence 

for cost-benefit analyses. 
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As evidenced in Figure 5, this domain of intelligence/information can be considered one-third of 

the triumvirate of assumptions required to objectively evaluate a DR program (or the universe of 

“abatement estimates”). The other two key components can be defined as (1) information on 

avoided costs, which typically are based on wholesale demand charges or more detailed 

estimated costs of power supply; and (2) detailed cost estimates associated with the all-in cost to 

deploy the demand response program, including core equipment, information 

technology/architecture, marketing and incentives, maintenance and repairs, and the long-term 

administrative and general costs associated with maintaining customer relationships and 

procuring new participants. 

The construction of a robust DR planning model is the logical extension of the work summarized 

in this project. Refer to Appendix A for further details on other sources of data and more detailed 

discussions of suggested model architecture, inputs, and outputs. 

11.0 Lessons Learned 

Based on the direct contact with participating co-ops, the review and manipulation of data as 

based on SDATS and follow-up information provided by individual co-ops, the results of the 

econometric analysis described above, and the Leidos vision for a downstream screening tool, 

the following are some lessons learned from our research endeavor. 

1. Cooperatives would benefit from further education and tools to assess the costs and 

benefits of programs prior to deployment. Leidos did not encounter any participating co-

op that had engaged in cost-benefit analysis prior to deployment of the programs, which 

suggests that each entity based its deployment decisions either on prior experience with 

existing DR programs already in place or through more high-level judgment techniques. In 

an incentivized (or demonstration-based) context, this approach provides sufficient 

coverage of options, and indeed, co-ops were successful in obtaining statistically 

significant hourly impacts associated with their load control programs, as detailed above. 

However, were the utility to finance such an endeavor on its own, further analysis should 

be conducted to estimate the total resource costs of a given program compared to the 

utility’s avoided power supply costs (or wholesale demand charges) and to examine the 

impact of the deployment on non-participants. The screening tool Leidos proposes to 

construct is predicated upon designing a user-friendly framework to engage in these types 

of analyses. 

2. A common standard or rubric for data management, scrubbing, and reporting 

capabilities, which leverages the power of SDATS, would allow for more efficient long-

term tracking of DR program performance. Leidos engaged in a greater-than-anticipated 

effort in extracting data from the SDATS system and working with individual co-ops to 

understand, catalogue, and scrub meter data. Additionally, the nature and extent of 

reporting into the SDATS system appears to have been executed in different ways across 

the various entities. A common set of guidelines for how to review and scrub the 

information would greatly expedite future investigations into the efficacy of DR programs 

over a much longer period of time. Such guidelines are critical precursors to the 

econometric analysis, which itself can be refreshed as time progresses and the program 
matures as to both the command that utilities have over anticipating the timing of load 

control events and the customer relationship management required to maintain a successful 

program. 
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3. Utilities should embed conservative estimates of load control impacts on a per-unit basis 

into their evaluations. As evidenced by our modeling results, the efforts to generate load 

control events that are commensurate with the system peak are generally aligned with 

expectations. However, the process is not perfect, and additionally, the ability of a given 

event to achieve a statistically significant impact in a given hour varies based on the type of 

program and the individual utilities involved. These results reinforce the notion of 

incorporating discount factors for peak coincidence, persistence, and net-to-gross issues, 

and applying them to engineering-based estimates of the technical abatement potential of 

load control devices. 

4. Utilities may be able to attract participants without significant monetary incentives. In 

some instances, entities provided similar feedback on the methods and incentives used to 

attract program participants. A commonly heard element of this approach was to hold town 

hall meetings or “get the word out” in informal ways, with the core message being that 

participating in the program is helping the member’s co-op, and consequently the 

community served by that co-op, to save money. The consumer reaction when presented 

with the program opportunity indicates that messaging strategies targeted toward the 

intrinsic benefits of load control may be a complementary tactic that can offset or reduce 

the need for direct financial incentives or credits. While compensatory incentives are 

unlikely to be phased out, the costs associated with attracting and maintaining program 

participants may be able to be reduced with the right communications platform. 
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Appendix A: Demand Response Planning Model 

A.1 Purpose 

Numerous demand response (DR) studies have been conducted over the past few decades in various 

regions of the United States. The outcomes and lessons learned from many of these pilots and 

theoretical research studies have published a wide spectrum of results. It is the NRECA’s desire not 

to repeat or restudy this arena but to glean from it, the best of the existing research findings to frame 

an approach to develop an easily accessible yet robust DR cost-benefit evaluation model that will 

enable co-ops to evaluate the relative effectiveness of competing demand response programs. 

Specifically, this meta-analysis and accompanying model will enable electric co-ops to understand 

the demand response potential that their specific class of customers will be able to provide, gauge the 

benefits of the DR, and quantify the costs of implementing such a plan. DR implementation results 

and data from the NRECA Smart Grid Demonstration Project will be leveraged for this analysis and 

tool development. 

The overarching purpose of the DR model as based on the collective vision of NRECA and Leidos is 

to devise a tool that will accomplish the following: 

 Provide a warehouse of cost estimates for a portfolio of potential DR programs (which are 

defined below) 

 Provide algorithms and assumptions from which the load impacts of the portfolio of DR 

programs can be estimated, taking into account customer attributes, environmental conditions 

(e.g., weather conditions, seasons, day of the week, etc.), and the technical or engineering 

realities associated with a given program; 

 In the absence of user-provided data specific to the co-op, leverage representative assumptions 

regarding the cost of abated marginal energy or peak demand to monetize the overall load 

impacts 

 Combine the cost of the program, the estimated avoided costs (benefits) of the program, and 

assumptions or analysis regarding potential participation rates for the program to compute 

benefit-cost ratios, discounted payback periods, and return on investment estimates that consider 

the most significant model factors (“first order effects”), with appropriate data proxies where 

necessary 

The model will carefully balance inputs and assumptions formulated into outputs within the model 

itself with, as appropriate, exogenous estimates of certain key assumptions (such as adoption rates). 

Preliminarily, it is anticipated that research into existing empirical studies will drive the majority of 

model logic, with boundary constraints limited to estimates of program participation, which will be 

an exogenous user input that will allow model users to devise scenarios of their choosing. At a very 

basic level, the model will internally develop the unitary benefit-cost ratio, net present value of 

system benefits, and internal rate of return for a single instance implementation of every DR program 

within the pre-defined portfolio. 

The remainder of this document details (i) a model overview that defines the DR programs we 

contemplate the tool will cover, provides the perspective from which the evaluation will be 

conducted, and delineates preliminarily contemplated inputs and outputs, ; (ii) the approach to be 

taken to devise model inputs, (iii) a high-level overview of the proposed model’s processes, 

sequencing, and architecture, including details on how the ultimate benefits, costs, and return on 

investment calculations will be summarized, and (iv) the data that is anticipated to be required to 
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execute the model. Finally, a discussion of next steps, given the information contained in this paper 

is also provided. 

A.2 Model Overview 

The core elements of the model development process that will define the model boundary are the 

types of DR programs the model will cover, the perspective of the cost-benefit evaluation, and the 

main model inputs and outputs. Each issue is summarized below, with the global understanding that 

the model boundary will be reviewed and refined during analysis and modeling activities, and that 

the items summarized herein are intended to provide us with sufficient specificity from which to 

finalize the model architecture. 

Types of DR Programs Covered 

The model will be able to provide coverage of the following DR programs: 

 Direct Load Control, which in the residential sector will be constrained to the most top-of-mind 

programs, specifically, water heater, HVAC, pool pumps, and irrigation pumps, and for which 

up to 7 additional programs will be considered in the commercial and industrial sector; 

 Seasonal Time of Use; 

 Critical Peak Pricing (or time of use with a price differential during critical peak periods); and 

 Peak Time Rebates. 

The model will be parsimonious, in the sense that users will be able to model one program at a time, 

and will be able to generate multiple iterations of the model to compare various scenarios or 

alternative programs against one another using a set of consistently derived outputs (defined 

preliminarily below).  

Perspective of the Evaluation 

There are differing perspectives that can be taken when evaluating a given DR program from an 

economic standpoint. The seminal literature on DR programs generally categorizes these 

perspectives into one of the following categories: 

 The utility administering the program 

 The participant in the program 

 The ratepayer who is not a participant in the program 

 Society in general and/or the external environment as it pertains to the public good resulting 

from abatement of demand and energy through participation in the program 

Based on feedback from NRECA and research and discussions within the Leidos team, the model as 

proposed will focus on the perspective of the utility administering the program. However, it should 

be noted that this perspective does not imply that the model will ignore the impact of specific rate 

differentials and incentive payments on participation and ultimate response. These issues will be of 

paramount importance, as they will serve as key inputs for specific programs that will allow for an 

objective evaluation of costs and benefits. 

Preliminary Model Inputs 

The following is a list of preliminarily contemplated model inputs. Some inputs will be directly 

derived and entered by the model user (“exogenous inputs”), whereas other inputs will require 

extensive research in order to parameterize the model and afford the user the requisite intelligence to 

render the model meaningful under a variety of contexts (“endogenous inputs”). The list below 
covers exogenous inputs, and the Approach section that follows details the proposed thought 
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process, research, and analysis required to derive the endogenous inputs. In some cases, flexibility 

will be provided to the user to select default values derived endogenously in lieu of direct input 

intervention, and those redundancies are listed in parentheticals in the list. 

 General information regarding the utility, case number/title 

 Retail class in question that DR program is being applied to and the number of customers in that 

retail class 

 Estimated baseline energy use and peak demand contribution of a given customer within the 

retail class in question (to be buttressed by default values derived from within the model) 

 Type of DR program desired to be evaluated 

 Estimated costs of the DR program for inception and ongoing maintenance (but only to the 

extent the user wishes to override endogenous model inputs) 

 Study period desired for the analysis (to be bounded based on a reasonable “upper bound” for 

the DR portfolio based on research and analysis and in partnership with NRECA) 

 Tolerances for discounted payback period (if applicable) 

 Rate differentials for the specific program (as applicable) 

 Estimated demand rate (at peak) and marginal energy cost for the utility in question (to be 

supplemented by a template in the model that will guide the user through derivation of such 

rates, if desired) 

 Estimated participation rates in the given program (to be supplemented by default values based 

on research and analysis underpinning the program in question) 

 Specific nuances of a given program or selections to narrow down the specific retail customer 

base (“attributes”) that serve as levers for both estimated demand and energy savings and 

participation rates, that will be active and available for user interaction if the program is selected 

and inactive otherwise (refer to the Approach section for a listing of such attributes) 

 Intelligence/assumptions about weather or seasonal elements of a given program (time of day, 

seasonal details, weather assumptions, etc.) that have a direct impact on participation and 

demand/energy savings (to be supplemented with “typical” conditions associated with 

deployment of a given DR program based on legacy implementations in the literature) 

Preliminary Model Outputs 

Given the exogenous user inputs and the endogenous model inputs (the approach for which is 

detailed below), the model will produce the following key outputs: 

 Annual and overall energy/demand saved and/or energy shifted to shoulder hours (during study 

period) 

 Net system benefits on a by-year and Net Present Value (NPV) basis, defined as the 

difference between total benefits and total costs of the DR program; 

 Benefit-cost ratios (e.g., Total Resource Cost Test), which can be used to determine 

estimated program payback periods and/or serve as a litmus test for whether a program is 

implemented; 

 Additional financial return metrics, most notably internal rate of return (IRR), which can be 

compared to the utility’s IRR if it were to invest in programs other than DR; and 

 Graphical outputs summarizing net system benefits on a by-year and NPV basis. 

The figures below represent example mock-up of outputs that will be derived from the model. 
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The first figure summarizes the net system benefits and NPV of a mock program by year over an 

example study period. Up-front net benefits are negative as a result of the investment, but over time, 

as the marginal cost of energy abated increases and the up-front investment amortization period ends, 

there is a significant upside. 

 

 
 

The second figure compartmentalizes the elements of cost and avoided cost in a stacked bar chart. 

Consistent with the above example, the cost bar is larger at project onset in this mock example, and 

the benefits from the elements of avoided cost considered (which are preliminarily defined further 

below) increase over time. 
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It is important to stress that the model outputs will be informed by feedback from NRECA 

stakeholders to refine these preliminary outputs in terms of both aesthetics and priorities related to 

financial metrics, and that, given a robust cataloguing of the appropriate costs and benefits of a 

given program, calculation of various industry standard benefit-cost ratios can be accomplished by 

combining the appropriate cost and avoided cost (benefit) elements together. 

A.3 Approach to Gathering Endogenous Model Inputs 

Overall, several important aspects must be considered when establishing a methodology to quantify 

the costs and benefits of demand response which have direct consequences in terms of the key 

endogenous model inputs for each DR measure, which are as follows: 

 The elasticity of substitution for a given retail class that results in energy savings/shifted to off-

peak periods and peak demand savings; 

 Energy and demand baselines by retail class; 

 Typical weather or seasonal conditions for deployment of a given DR program; 

 Program costs (direct and ongoing); 

 Participation rates (which allow for the allocation of certain fixed costs over a greater contingent 

of program participants); and 

 The relationship between up-front investment/incentive levels or price differentials and 

participation.  
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Some obvious questions that must be addressed in order to parameterize the model with these 

endogenous inputs are: 

 What customer attributes are important? 

 What are the customer response sensitivities? 

 What environmental conditions are relevant? 

 Which DR treatments are the most effective? 

 What drives the cost of the programs and implementation details? 

With these questions in mind, and with the intent to develop a relatively simple initial model, we 

intend to focus our research on the population of co-op customers in each retail class (residential 

and commercial/industrial/agricultural) that is likely to provide load curtailment and participate 

in the DR programs, and quantify the impact of participation of those customers in the 

aforementioned portfolio of DR programs. We will establish a set of assumptions and perform 

analysis as needed that we will apply to the aforementioned specific customer attributes and then 

derive expected customer responses. Given reasonable assumptions regarding the nexus of these 

factors with actual customer activity and the savings to be achieved when deploying DR, DR 

program costs will be estimated as well as the DR benefits to the co-op, and these will determine 

the overall return on investment. 

To define the appropriate customer population that will be the focus of our research, numerous 

attributes will be considered. Some of these attributes are fully relevant and others may not be 

germane enough to a parsimonious treatment of costs and benefits to warrant inclusion. Some 

key characteristics that have been identified in various studies are discussed below. We propose 

to bifurcate the retail space into residential customers and the collective commercial/industrial/ 

agricultural customer base when examining key attributes that will be used to derive the 

endogenous assumptions for each class by DR program. In addition, other key attributes outside 

of the retail distinctions will also be considered in the development of our endogenous inputs, 

most notably the elasticity of substitution. These factors, as well as the mathematical construct 

proposed to derive elasticity of substitution, are both detailed in the Model Architecture section 

below. 

Residential Customer Attributes 

This class of customer is likely the largest and most significant demand response group for many 

co-ops. As such, determining the simplest model will depend on what information is available 

about these customers. It all comes down to the ability to model their electric demand and predict 

that use over various conditions. Certain attributes that are drivers for consumption and, more 

importantly, curtailment will be considered and proxy attributes that may be substituted, if any, 

will be conceptualized. The majority of the specific customer data is expected to be obtained 

from the co-ops and augmented with a few proxy sources if necessary. The following attributes 

will be considered for residential customers as they pertain to measurement or estimation of DR 

impacts, and also for participation potential. 
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Attribute Description 
  

Energy Awareness How energy conscious are the residents? Are they familiar with the impacts of energy 
production and the degree to which this affect s price and the environment? Would this 
level of awareness drive the customers to step up their level of participation if it will 
lower costs or preserve the environment? 

Income level Is the income level a predictor of their consumption? Does income play a part in how 
motivated the customer is with respect to demand response signals? Can a home value 
estimate be an accurate proxy? Alternatively, can the proportion of electricity cost 
relative to income in a region (ZIP code or census tract) be used to determine how 
much abatement of consumption matters? 

Owner or renter Does ownership have a positive effect on DR? 
Single or multi-family How do the different densities of homes affect DR? 
Number of occupants Certainly, a greater electric demand is expected as the number of occupants increases, 

but does this inversely affect DR participation? Will they adjust their lifestyle to save a 
few dollars? 

Urban or rural Does the location play a part? Can ZIP code be an accurate proxy? 
Electric price Does the price per kWh that the customer routinely pays make a difference? Existing 

retail rates can be used for this purpose as well as for valuation of avoided energy. 
Electric energy 
consumption (per home) 

Does the amount of electricity consumed affect a customer’s reaction to pricing 
signals? Research suggests that low-consumption customers do indeed respond to DR 
programs. Their responses tend to be about the same percentage reductions in demand 
and energy as larger consumption accounts 

 

Commercial, Industrial, & Agricultural Customer Attributes 
This class of customer, although typically fewer in number compared to the residential class, can 
individually have significant demand. They behave much differently and more diversely than 
residential customers and can be more difficult to model. The following attributes will be considered 
for commercial and industrial customers as they pertain to measurement or estimation of DR impacts, 
and also for participation potential. 

 
Attribute Description 

  

Size of business This will drive the overall consumption and, to some degree, the amount of curtailment 
possible. 

Electric price Does the price per kWh that the customer routinely pays make a difference? Are there 
specific commercial tariffs that may be counterintuitive with respect to DR? 

Electric energy 
consumption (per sq. ft.) 

Does the amount of electricity consumed affect a customer’s reaction to pricing 
signals? Does a low consumption customer even have the ability to lower consumption 
any further? 

End use This perhaps is the primary factor in determining the potential DR. Does the business 
operate 24/7? Is electricity the fundamental energy source in the production of the end 
product? Does the business operate with multiple production shifts and have the ability 
to be flexible with its manufacturing process? 

 



Demand Response – Testing the Theoretical Basis May 31, 2014 
 

 

–A-8– 

A.4 Model Architecture 

The conceptual model addresses the above questions, and is depicted in the figure below. 
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The foundation of the model is driven by the baseline energy consumption of DR program 

participants. This provides the basis for determining the potential demand response from those 

participants. The discussion that follows provides a chronology of how the model will go about 

leveraging exogenous and endogenous inputs to derive the ultimate model outputs. 

Define Customer Population and Classes for Analysis 

The process begins by identifying the customer population for the DR program to be evaluated, 

as based on user entry. We propose to bifurcate the customer base into residential and 

commercial/industrial/commercial classes. 

The model’s endogenous assumptions will take care not to lump in customers that either cannot 

or will not participate in any demand response program. Customers that rely on electricity for 

critical operations are an example of a specific group (hospitals, data centers, restaurants, etc.) 

that may not be demand response eligible. 

The purpose of this first step is to reduce the overall customer base into a smaller, demand 

response eligible subset that will be considered in the cost/benefit analysis. We believe that the 

bifurcation suggested will allow us to compute a representative elasticity of substitution that 

characterizes how a particular customer class will respond to a given DR program while keeping 

the model relatively simple in terms of structure. 

Define Programs 

Next, the model will consider the possible demand response pricing programs that are to be 

included in the analysis, as based on user selection and the aforementioned portfolio of DR 

programs. Various demand response treatments coupled with the desired pricing structures 

define the set of programs that drive the set of calculated elasticities. This element of the process 

will also define the costs of each program (either direct incentive costs, equipment subsidies, or 

ongoing administrative costs, as applicable) as a function of the specific program and the retail 

class selected by the user. Refer to the Data Requirements section of this paper for suggested 

sources of cost data. 

Calculate Participation Rates 

Based on the user input defining the targeted customer classes and the desired DR programs, the 

estimated participation rates will be calculated. As participation in utility DR programs can be 

fluid and vary from year to year, we intend to calculate these for each customer class/DR 

program pair based on a meta-analysis of existing literature for benchmark programs of like 

structure and customer base. Furthermore, as mentioned above, the user will have the full 

flexibility to revise or adjust our default model values based on their particular insights and 

estimates of penetration potential. 

Calculate Elasticities of Substitution 

Given the user-defined customer class and DR program, the response characteristics must be 

estimated. How will the targeted customer class respond to a price signal, given the relevant 

attributes and environmental and event conditions? How much of their on-peak energy will be 

moved to the off-peak period, and how much peak reduction can be expected? This will be a 

fundamental calculation within the model and will require significant research to (i) establish the 

attributes and environmental and event conditions that should be reflected in the model, and (ii) 

parameterize these factors as a part of the estimation of the by-participant impact of a given DR 

program. 
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Several demand response studies have documented the customer attribute, environmental, and 

event conditions that are dominant in determining the load response, in terms of elasticity of 

substitution, to DR events. As we anticipate estimating the DR impacts on an elasticity basis, the 

list below does not include price differentials between on- and off-peak, but the price differential 

is a significant driver. The key attributes denoted below are preliminarily proposed to comprise 

the “nuances” of a specific program, and the user will be able to use these nuances as levers in 

the model to utilize differing elasticity of substitution assumptions to the extent the model’s 

endogenous calculation of the elasticity of substitution is informed by a given attribute. Note 

herein that retail class distinctions will also inform the elasticity of substitution calculation. 

Key Attributes of DR Programs 

 

Attribute Description 
  

Event duration The duration of the demand response event drives the response rate; short events are more 

effective than longer events 

Event frequency Initially, demand response participation may be good, but as the frequency of events 

increases, the participation level decreases 

Event clustering As with the previous two event types, clustering is a combination of the two. Numerous 

events over a span of several days can be exhausting to the customer. As the clustering 

intensifies, customers begin to opt out of the DR program 

Weather As expected, both temperature and humidity play a significant role in demand response 

participation and the duration of these weather conditions is also significantly correlated 

with response. 

Electric cost ratio This attribute is the magnitude of the electric energy cost divided by the total energy cost 

for a customer. . Some customers may have a mix of electric and oil or natural gas energy 

consumption, and the percentage of electric consumption to service their energy needs 

affects how they view their ability to lower their overall energy costs. Energy costs as a 

proportion of total income (residential) or revenue potential during requested times of DR 

deployment (commercial/industrial) may also factor into the propensity of the participant 

to curtail load. 

Prior DR participation Studies have also concluded that those customers that have either participated in a 

previous demand response program or are “energy cost” conscious are more active DR 

participants. 

On-site generation The presence of generation at a customer site is a strong indicator of positive 

participation. It allows the customer to continue their consumption, most likely a business 

operation, and reduce demand from the distribution system. 

Business process 

flexibility/end use 

There is evidence that from a business process perspective, if the operation has the 

flexibility to move end uses to different times of the day, then demand response 

participation is feasible. This can be accomplished with processes that may be able to run 

on an alternate shift, after hours, or deferred to the next day. 

Automation of response Response rates tend to be significantly better if there is equipment that can automatically 

manage the response for the participant, such as automated thermostats for residential 

customers. 

 

Methodology for Computing Elasticity of Substitution 

The model will deploy an econometric approach to compute elasticity of substitution. This 

approach will leverage as many of the above attributes as possible. However, it is likely that 

additional discrete adjustments to elasticity to capture certain attributes will be made based on 

the prevailing literature and/or expert judgment when sufficient data does not exist to infuse that 

attribute into the analysis. 
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The typical econometric analysis seeks to explain variations in customer loads during DR events, 

relative to loads in other hours, as a function of a series of explanatory, or independent variables. 

The dependent variable, or variable explained in these analyses, is typically the ratio of the 

average load during the DR event to the average load during other hours, or the “Peak Load 

Ratio.” Explanatory variables typically include variables regarding the relevant electric rates, 

customer attributes, event conditions, and weather conditions, as detailed above. The primary 

analytical method is typically a multivariate econometric analysis, which quantifies the isolated 

impacts of a large number of a priori specified variables on the ratio of load during event hours 

to load during non-event hours. 

The primary functional form of the theoretical equation is typically as follows: 

ln Yi,t = α + β1 ln X1i,t + β2 ln X2i,t + … + Bn ln Xni,t + Єi.t 

Where, 

Yi,t – The load characteristic of interest for customer i and day t 

Xni,t – Explanatory variables for customer i and day t (discussed below) 

α , βn – Parameters to be estimated via regression 

Єi,t – The amount of error in the equation’s estimate of Yt 

As the data set to be analyzed will generally comprise customer loads and characteristics by 

customer and by day, it conforms to what is commonly referred to as “panel data.” 

The potential explanatory variables are typically tested for their ability to explain variations in 

the ratio of on- to off-peak average loads include the following (which are generally aligned with 

the attributes listed above): 

 Ratio of on- to off-peak electric rates 

 Installation of “enabling technologies,” or devices to assist the customer in awareness of DR 

events or in reacting to events (e.g., in-home display, programmable communicating 

thermostat, text alerts, etc.) 

 Installation of air conditioning or electric heat 

 Installation of other appliances (e.g., electric water heating) 

 Daily weather conditions (maximum temperature, temperature-humidity index, and/or 

preceding day maximum temperature) 

 Seasonal variables (e.g., month of year) 

 Day type variables (e.g., day of week) 

 Housing type (e.g., single- vs. multi-family) 

 Type of occupancy (full- vs. part-time) 

 Extent of daytime home occupancy 

 Household income 

 Household education attainment 

 Household size and composition (e.g., number of persons, number of children, percent of 

household between 13 and 18 years of age) 

 Technological proclivity of household decision makers (e.g., early adapters vs. laggards on 

the product adoption curve) 
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The analysis process is inherently iterative, with varying combinations of explanatory factors 

being posed, estimated, and reviewed for explanatory power and statistical validity as compared 

to other combinations. The modern standard of practice for multivariate statistical modeling 

involves the notion that “theory must confront the data.” It is a critical part of the process to 

delineate what theories, intuition, or engineering expectations exist relative to particular 

socioeconomic or demographic conditions, that can then be cross referenced with the empirical 

model to put those theories to the test. In some cases, adequate data regarding a variable of 

interest will not be available, which will require inference from other related variables or the use 

of a proxy of some kind. 

Once the best combination of explanatory variables and their estimated parameters are arrived at, 

the resulting equation can be combined with assumed values for the explanatory variables to 

produce estimates of load impacts (i.e., the percentage of load shifted from on- to off-peak). For 

purposes of reporting a single elasticity value, it is typically necessary to populate certain 

explanatory variables (e.g., weather conditions) and solve for the resulting combined parameter 

on the price ratio. For example, weather conditions are likely to be related to the extent of the 

impact of dynamic prices on load characteristics. In order to report a single elasticity value, an 

assumption must be made for the weather conditions that are representative of the typical 

conditions that are relevant—for example, an average summer day or summer peak day might be 

utilized. 

The empirical research on the impacts of DR programs typically indicates price elasticities that 

are in a reasonable range and statistically significant. The range of price elasticity estimated from 

the load data of participating customers has ranged from approximately -0.05 to -0.30. Most of 

these studies have shown greater elasticities in the presence of in-home displays and other 

enabling devices. 

Calculate Monetized Benefits of Substitution 

Based on the estimated elasticity of substitution for a given stratum of participating customer, the 

estimated peak demand abated and energy saved or shifted to off-peak hours will be monetized. 

As noted above, certain assumptions involved in the calculation will either be a function of 

default values endogenous to the model, user overrides, or templates designed to aid the user in 

determining the appropriate basis for valuation. Valuation of benefits will be achieved using the 

following avoided cost protocol: 

 Abated peak demand will be valued at either the demand rate of the prevailing utility for the 

given customer class (if applicable) or the capacity cost of the marginal resource that would 

otherwise serve that load; as some customer classes are billed based on demand rates, 

benefits will be greater for those customer classes 

 Energy saved will be valued at the marginal energy cost, either based on rate ratchets for on-

peak energy or, if not applicable, the general energy charge (e.g., residential) 

 Energy estimated to be shifted to shoulder hours will be valued only to the extent the 

specific customer class is subject to price discrimination based on peak/off-peak 

consumption; otherwise, there are no monetized savings, as the consumption is merely 

shifted and not saved. 

 The key components of avoided cost (or benefits) that are preliminarily contemplated for 

evaluation over a pre-specified time horizon, some of which may not necessarily apply to 

every DR option contemplated, include: 
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 Avoided or Delayed Generation or Purchased Power Capacity Additions (demand 

savings); 

 Avoided Costs of Energy Production (including avoided emissions costs); 

 Avoided Transmission/Distribution cost (including avoided capital expenditures); 

 System Loss savings; 

 Avoided ongoing O&M costs associated with Transmission and Distribution system 

improvements (if any); and 

 The value of potential power market sales of resources that are free to serve the 

external market in place of the energy generation that has been avoided as a result of 

the DR Program. 

To the extent that adjustments need to be made to the list above to capture specific nuances of a 

given DR measure, such changes will be made, while balancing the need to develop conclusions 

about the costs and benefits of the program using a standardized method that reflects the current 

standard of practice in the electric utility industry, and that can easily be compared across different 

options. 

From an avoided cost perspective, it is anticipated that the bulk of benefits will arise from avoided 

demand and energy costs, potentially including avoided or delayed capacity additions if the program 

is of sufficient size and scope in terms of participation. Capacity savings represent value in terms of 

either deferred or avoided investment costs by the utility as well as a reduction in the cost of 

running high-cost peaking generation. Energy savings represent both immediate and ongoing 

cumulative benefits associated with the reduction in generation fuel and operating costs of supply-

side resources as well as losses. As most co-ops purchase their power, the users will be able to 

enter their own estimate of power supply costs for both demand and energy. However, we propose 

to make the modeling framework flexible enough to capture both key marginal capacity and energy 

situations that are likely to be encountered, specifically, (i) the utility has avoided operation of 

native/existing generation or abated the need for additional generating capacity, or (ii) the utility 

buys marginal capacity and energy from the market, whereby avoided costs can be mapped to an 

existing demand or energy rate. 

Default values endogenous to the model for avoided demand and energy costs will be developed 

as supplemental and supportive of user-defined costs. As it is highly likely that almost all model 

users will have a good handle on their specific power supply costs, the analysis of default values 

will be sufficiently high level as to not divert excessive resources to the estimation process in lieu of 

focusing on higher priority model elements. 

To capture endogenous avoided demand costs, the model will contain information from third party 

sources on the representative alternative supply side generating unit’s capital and fixed O&M costs 

to estimate potential capacity savings. To the extent there is an intermittency in the ability of the 

measure to align peak shaving with the utility’s system peak, such issues will be examined at a 

high level, and it is anticipated that NRECA will be able to assist Leidos with developing 

reasonable assumptions for dependable capacity (or the amount of capacity that can realistically be 

avoided at the time of the utility peak). 

To develop projections of avoided and incurred marginal energy costs, the heat rate of the assumed 

alternative marginal generating resource (defined based on research of existing third-party databases) 

will be multiplied by a forecast of fuel prices plus variable operating and maintenance and emission 

allowance costs to derive a total per-unit ($/MWh) energy cost for the alternative supply-side 
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resource. These average per-unit costs would then be multiplied by the projected avoided energy of 

the measure (adjusted for marginal losses) to derive total energy cost impact. In each case (demand 

and energy), a template will be provided as an option to the user to populate these more detailed 

statistics in lieu of direct entry of demand and energy rates, such that the user controls the inputs, but 

the model still computes the ultimate costs endogenously. The user will essentially have three 

choices in terms of validation (direct input of costs, use of defaults, or provision of needed 

information to recompute assumptions endogenously). 

To the extent other elements of avoided cost are present and relevant, most notably the potential for 

market sales, the model will provide an input range for utilities to enter estimates of market sales 

potential into the model, so as to provide a fair and objective evaluation of potential DR program 

benefits. Default market prices at a high level by region of the country also will also be provided as 

an option. 

Calculate Benefit-Cost Ratios, Internal Rate of Return, Net Present Value, and Discounted 

Payback Period 

The model’s internal logic will carefully review model inputs as gathered and delineated above and 

examine the resulting DR program evaluation model findings for reasonableness. Results for each 

measure will include the following (which are identical to the aforementioned model outputs from 

above): 

 Annual and overall energy and demand saved and/or energy shifted to shoulder hours (during 

the study period); 

 Net system benefits on a by-year and Net Present Value (NPV) basis, defined as the difference 

between total benefits and total costs of the DR program; 

 Benefit-cost ratios (e.g., Total Resource Cost Test), which can be used to determine estimated 

program payback periods and/or serve as a litmus test for whether a program is implemented; 

 Additional financial return metrics, most notably internal rate of return (IRR), which can be 

compared to the utility’s IRR if it were to invest in programs other than DR; and 

 Graphical outputs summarizing net system benefits on a by-year and NPV basis. 

Interpretation of model results by NRECA and other stakeholders will be fairly simple by design. 

The model will sum all of the avoided costs of the measure that are relevant and subtract the total 

measure’s intrinsic costs in each year to arrive at Net System Benefits each year. These Benefits then 

all will be discounted back to today's dollars and added to compute the Net Present Value (NPV) of 

Net System Benefits. In a year in which costs outweigh benefits, the Benefit-Cost ratio will be 

negative. This will generally be the case in the first year of a program, when implementation costs 

are incurred but benefits have not had time to accumulate. For productive programs, this ratio will be 

above or equal to 1.0 as the study horizon extends. A measure that has a positive NPV of Net 

System Benefits is a program where benefits outweigh the costs in the long run. If a measure has a 

negative NPV of Net System Benefits, program parameters may need to be reexamined, 

sensitivities may be necessary, or it may be that the program is simply too expensive relative to the 

value of expected demand/energy reductions. 

It will be critical to devise model calculations with an emphasis on the benefits and cost for the 

utility in question. There are industry-standard benefit-cost ratios that can be brought to bear, 

such as the Total Resource Cost Test, the Rate Impact Measure Test, etc. to evaluate impacts. As 

the model will calculate and summarize all relevant first-order costs and benefits, calculating 

alternative benefit-cost ratios from various perspectives (utility, utility and G&T, the participant, 
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society, etc.) will be a natural consequence of the model structure. Based on NRECA feedback, 

the impact on the utility will be the priority perspective captured in the model. Alternative 

benefit-cost ratios, if deemed valuable, will be summarized as part of the results interface/tables 

of the model. 

A.5 Approach to Gathering Endogenous Model Inputs 

The model requires accurate data to drive the results, defining both the cost of the demand response 

program(s) and the benefits of such programs. It is clear that some required data may not exist or, if it 

does exist, the accuracy may come into question. For the areas where data do not exist or are not 

available for model consumption, substitutes and/or proxy data will be considered as a best fit for the 

specific inputs to the model. 

Customer Population 

To screen out the customer accounts that are not likely candidates for a demand response 

program, data about these customers is required. From a residential perspective, it is reasonable 

to assume that the majority of customers would be eligible and there is nothing compelling about 

their electric use that would immediately indicate that they could not contribute to demand 

response. It might however, be an option to eliminate the very low consumption customers from 

the mix, as the investment required to provide the hardware and in-home devices might be 

greater than the load reduction savings over several years. From that perspective, the payback 

period could be considerable. In this case, given the account demand data, a minimum threshold 

can be established that considers only those residential customers above a certain demand to be 

included in the customer population. Customers that may be on energy-assistance or other types 

of levelized billing programs or lower-income customers may also be able to be filtered out. 

With that said, in an effort to provide a holistic and inclusive set of assumptions when evaluating 

a given program, the model will give the utility the key economic metrics inclusive of such 

customers to the extent desired by the user utility. 

Commercial and industrial customers should be viewed with a slightly different approach. There 

will be groups of customers that will not be likely candidates for a demand response program. 

Here, we would want to screen out the likes of hospitals, restaurants, and other end use 

customers that are clearly not capable of reducing their loads. 

Given that many co-ops are located in rural regions of the country, the agricultural customer base 

could be a significant contributor to demand response. 

The table below defines the data needed for each customer category: 

Attribute Residential 
Commercial & 

Industrial 

Agricultural 

   

Business end use  NAICS code NAICS code 

Demand threshold Average demand 

(co-op supplied) 

Average demand 

(co-op supplied) 

Average demand 

(co-op supplied) 

 

Programs 

The data input requirements for the aforementioned list of DR programs the model will cover will be 

derived from various studies conducted across the nation. Data will need to be gathered for these 

specific demand response programs and the intelligence gathered must provide the necessary pricing 

structure for the desired programs in the model. 
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The table below defines the program data needed for each customer category: 

Attribute Residential 
Commercial & 

Industrial 

Agricultural 

   

Pricing structure On/off peak price 

(study/user based) 

On/off peak price 

(study/user based) 

On/off peak price 

(study/user based) 

Financial incentive $ (study/user based) $ (study/user based) $ (study/user based) 

 

Customer Class 

The customer class process segments the customer population (as delineated above) into classes that 

have similar response characteristics. These are primarily based on how the customer uses electricity, 

how load reduction is implemented (via informational channels or direct control), and by particular 

sensitivities of customers. Generally, the energy use indicates the number and size of electric loads in 

the home and this can also align with the magnitude of household energy costs that are electric based 

rather than other fuel-based (like natural gas heating and cooking). Particular customer data will be 

required to support the classification and the model will categorize these with some knowledge of 

what Elasticities of Substitution are available. 

The business activity of large customers is strongly correlated to their willingness to participate 

and thus, to how they might respond. Information on these customers’ lines of business is 

available in the form of North American Industry Classification System (NAICS) codes. These 

codes distinguish groups of customers with similar energy usage characteristics, and we will use 

them to target likely customer groups for the commercial, industrial, and agricultural segment. 

The table below defines the data needed for each customer category: 

Attribute Residential 
Commercial & 

Industrial 

Agricultural 

   

Electric loads by end use Major electric load devices 

(co-op supplied) 

Major electric load devices 

(co-op supplied) 

Major electric load devices 

(co-op supplied) 

Existing electric tariff rate $/kWh 

(co-op supplied) 

$/kWh & $/kW 

(co-op supplied) 

$/kWh & $/kW 

(co-op supplied) 

On-peak energy On-peak kWh 

(co-op supplied) 

On-peak kWh 

(co-op supplied) 

On-peak kWh 

(co-op supplied) 

Off-peak energy Off-peak kWh 

(co-op supplied) 

Off-peak kWh 

(co-op supplied) 

Off-peak kWh 

(co-op supplied) 

Total energy cost $ (co-op supplied) $ (co-op supplied) $ (co-op supplied) 

On-site generation  Capacity (co-op supplied) Capacity (co-op supplied) 

Business type  NAICS code NAICS code 

Enabling technology Device type 

(study/user based) 

Device type 

(study/user based) 

Device type 

(study/user based) 

 

Participation Rates 

The customer penetration rate is inherently very fluid and tends to change from year to year. Existing 

customers may drop out after a couple of years and others will join in any given year. Some may 

rejoin if the program changes and/or implements new incentives. Based on these factors, it will be 

more practical to estimate the participation rate based on the typical year of a single mature program, 

given there is data for such a program. Given data from previous demand response deployments, the 

enrollment factor can be one method to establish the appropriate value for the model. 
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Several methods in estimating participation rates have been documented from various studies, 

such as Expert judgment (or Delphi), Translated experience, Benefit threshold, and Choice 

model. Each one has advantages and disadvantages and can take considerable effort and 

experience to gain useful results. We will choose the method that is suitable for the model and 

reinforce a simple approach, allowing user input in the assumptions ultimately used. 

The Benefit threshold approach might appear to be the best choice, as it strives to base the 

participation rate largely on the customer’s expectation of benefits. It doesn’t rely on data from 

previous program implementations and therefore, makes this an attractive option. It does, 

however, require assumptions on the benefit level that will encourage participation. A prudent 

approach will be to develop a high/med/low benefit level that will define a high/med/low 

participation rate for the model to apply. 

The table below defines the participation-related data needed for each customer category: 

Attribute Residential 
Commercial & 

Industrial 

Agricultural 

   

Benefit threshold $ Savings/month 

(study/user based) 

$ Savings/month 

(study/user based) 

$ Savings/month 

(study/user based) 

Enrollment factor Typical rate from 

published studies 

(study/user based) 

Typical rate from 

published studies 

(study/user based) 

Typical rate from 

published studies 

(study/user based) 

 

Elasticities of Substitution 

The data required to develop the elasticity of substitution for each customer class is dependent on 

customer response from programs that have been implemented and studied. Without this type of 

data, it is difficult to estimate how customers may respond to demand response programs. Within 

the NRECA community, more than a dozen demand response demonstration programs slated for 

implementation and we will draw on those results to perform the estimation of elasticity for the 

model. If the data is insufficient to provide the essential input then other relevant published 

demand response pilots – of which there are numerous – will be explored. 

Layered upon those base sensitivities, several other response factors will be estimated and used 

to adjust the base elasticities. Our approach will be to determine a high/med/low effect that will 

help illustrate the range of DR potential rather than target a single point. To the extent elasticity 

of substitution methods are not tractable for a given measure, load impacts will have to be 

estimated in a more discrete fashion as discussed above. 

The table below defines the preliminarily contemplated data needed for each customer category. 

Refer to the discussion above regarding the analytical approach to determining elasticity of 

substitution, as there may be additional data needs uncovered as the execution of that approach 

moves forward. 
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Attribute Residential 
Commercial & 

Industrial 

Agricultural 

   

% Electric cost/total cost Electric & Gas bill 

(co-op supplied) 

Electric & Gas bill 

(co-op supplied) 

Electric & Gas bill 

(co-op supplied) 

Prior DR participation Prior DR program details 

(co-op supplied) 

Prior DR program details 

(co-op supplied) 

Prior DR program details 

(co-op supplied) 

On-site generation  Capacity (co-op supplied) Capacity (co-op supplied) 

Ratio on-peak to off-peak 

price 

Prior DR program details 

(co-op supplied) 

Prior DR program details 

(co-op supplied) 

Prior DR program details 

(co-op supplied) 

Ratio on-peak to off-peak 

load 

Customer demand history 

(co-op supplied) 

Customer demand history 

(co-op supplied) 

Customer demand history 

(co-op supplied) 

Event duration Prior DR program results 

(co-op supplied) 

Prior DR program results 

(co-op supplied) 

Prior DR program results 

(co-op supplied) 

Event frequency Prior DR program results 

(co-op supplied) 

Prior DR program results 

(co-op supplied) 

Prior DR program results 

(co-op supplied) 

Event clustering Prior DR program results 

(co-op supplied) 

Prior DR program results 

(co-op supplied) 

Prior DR program results 

(co-op supplied) 

Weather Historical records 

(external data) 

Historical records 

(external data) 

Historical records 

(external data) 

 

Baseline Customer Loads 

The load impact calculation relies on the customer base load during planned demand response 

events. This will require access to customer demand history broken down into on-peak and off-

peak consumption. 

The table below defines the data needed for each customer category. The model will invite the 

user to input these values and, if the user does not have them, will substitute default values based 

on U.S. regional averages. 

Attribute Residential 
Commercial & 

Industrial 

Agricultural 

   

Customer base load Customer demand history 

(co-op supplied) 

Customer demand history 

(co-op supplied) 

Customer demand history 

(co-op supplied) 

 

DR Cost 

To calculate the demand response program cost, the model will leverage existing NRECA DR 

demonstration costs and nationwide studies of demand response implementations. As with other 

key inputs, the user will have the ability to override default values. 

The table below defines the data needed for each customer category: 

Attribute Residential 
Commercial & 

Industrial 

Agricultural 

   

Program costs Prior DR program details 

(co-op supplied) 

Prior DR program details 

(co-op supplied) 

Prior DR program details 

(co-op supplied) 

Equipment costs Prior DR program details 

(co-op supplied) 

Prior DR program details 

(co-op supplied) 

Prior DR program details 

(co-op supplied) 

 

DR Benefit 

Refer to the above discussion for how benefits will be valued, and the three choices given the 

user related to marginal energy and demand rates used to value abatements. 



Demand Response – Testing the Theoretical Basis May 31, 2014 
 

 

–A-19– 

The table below defines the data needed for each customer category: 

Attribute Residential 
Commercial & 

Industrial 

Agricultural 

   

Demand charge Co-op $/kW charge  

(co-op/study supplied) 

Co-op $/kW charge  

(co-op/study supplied) 

Co-op $/kW charge  

(co-op/study supplied) 

Energy charge Co-op $/kW charge 

(co-op/study supplied) 

Co-op $/kW charge 

(co-op/study supplied) 

Co-op $/kW charge 

(co-op/study supplied) 

 

A.6 Summary 

Our approach to DR cost-benefit evaluation will allow the NRECA’s co-ops to simulate the 

effectiveness of defined DR programs and drive the model to quantify the cost and benefit 

results. It will leverage input data, from the individual co-ops, that will establish the specific 

attributes of customer base and energy supply costs that are critical to the analysis. Within the 

model, elasticities of substitution will be modeled through various existing demonstration 

programs, both within the NRECA membership and out in the industry (as needed). The user 

will have the capability to enter and adjust several parameters in the model that will enable a 

comprehensive analysis of what programs will be effective at differing levels of customer 

participation. 

This initial conceptual model approach is based on the congruence of a number of methods and 

studies performed in various jurisdictions throughout the country. It is prudent that the next steps 

in vetting our model approach is to conduct a review with the NRECA and determine if we meet 

the expectations of method, functionality, and data access assumptions. We would also prefer to 

expose the defined user interaction with a few of the co-ops and solicit their feedback in how we 

envision the model to be used by them. We anticipate that with that feedback in hand we will 

then finalize the approach, architecture, and methodology. 

 




