

Approach and Deployment of gridSMARTSM at AEP

Tara L. Francis

10/13/2010

Presentation Overview

- AEP's approach to gridSMARTSM
 - Strategy
 - Focus
 - Participation
- AEP's gridSMARTSM Deployments

gridSMARTSM Strategy

- Understand and influence public policy on Smart Grid at State and Federal levels
- Participate in Standards and Interoperability development and testing
- Build gridSMARTSM Deployment Plans in alignment with State Regulatory "appetite"
- gridSMARTSM Plans work toward EISA Section 1301 characteristics of a Smart Grid *
- Operating Company projects with Corporate support for consistency and knowledge sharing
- Metrics to support business case for expansion

* Appendix A - Energy Independence and Security Act

gridSMARTSM Strategy: Back-Office Interoperability

- CIM
- Metering (IEC 61968-9)
 - AMI, MDM, portal, CIS
 - Working directly with IEC to propose extensions
- Energy Markets (IEC 62325)
 - Real-time pricing

AEP's gridSMARTSM Focus Areas

- •Meet Energy Efficiency Goals
- •Update Infrastructure to meet future Smart Grid expectations
- •Reduce operating costs
- •Earn a fair return on investment

Basic AEP gridSMARTSM System Building Blocks

Distribution Grid Management

- DSCADA to monitor and control equipment
- Fixed and switched capacitor banks with neutral sensing
- Voltage regulator banks
- Volt Var Optimization Schemes demand and energy reduction
- Automatic circuit reconfiguration schemes with Switches and Reclosers
- Distributed generation and renewable energy sources

AMI and Customer Programs

- Automated meter reading
- Automated connect and disconnect
- Time of use rates and real time pricing
- Demand reduction and energy efficiency
- Home area network
- Cyber Secure Communications Infrastructure for AMI and DMS
- Integrating DMS with existing GE OMS and AMI infrastructure to improve outage restoration
- Software integration utilizing Common Information Model (CIM) in coordination with EPRI & NIST

Participation:

 AEP utilizes its participation in user groups, standards bodies, working groups, testing, etc to assist, lead and influence the industry in developing and maintaining better and more mature standards and products

Key Standards & Related Organisations

AEP Participation in CIM Key Standards & Related Organisations

Participation in CIM Key Standards & Related Organisations

Participation:

- CIM is a work in progress at AEP. Below are some of the efforts AEP is making to utilize CIM in our development efforts:
 - Standardizing development utilizing the CIM
 - Governance of the CIM model
 - CIM Roles and Responsibilities
 - Continue to educate and train employees involved in gridSMARTSM efforts

AEP's Operating Companies

Indiana Michigan Power -			
AEP Ohio			
Appalachian Power —	1-1-	- 11-	
Kentucky Power			
Public Service	- 5-1		
Southwestern Electric Power Company			
AEP Texas	-		

gridSMARTSM Deployment Status

QUESTIONS?

APPENDIX A: Characteristics of Smart Grid*

- Increased use of digital information and controls technology to improve reliability, security, and efficiency of the electric grid.
- Dynamic optimization of grid operations and resources, with full cyber-security.
- Deployment and integration of distributed resources and generation, including renewable resources.
- Development and incorporation of demand response, demand-side resources, and energy-efficiency resources.
- Deployment of "smart" technologies (real-time, automated, interactive technologies that optimize the physical operation of appliances and consumer devices) for metering, communications concerning grid operations and status, and distribution automation.
- Integration of "smart" appliances and consumer devices.
- Deployment and integration of advanced electricity storage and peak-shaving technologies, including plug-in electric and hybrid electric vehicles, and thermal-storage air conditioning.
- Provision to consumers of timely information and control options
- Development of standards for communication and interoperability of appliances and equipment connected to the electric grid, including the infrastructure serving the grid.
- Identification and lowering of unreasonable or unnecessary barriers to adoption of smart grid technologies, practices, and services.

* Cited from Energy Independence and Security Act (EISA) Section 1301

