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Executive Summary

The Pacific Northwest Smart Grid Demonstration (PNWSGD), a $179 million project that was
co-funded by the U.S. Department of Energy (DOE) in late 2009, was one of the largest and most
comprehensive demonstrations of electricity grid modernization ever completed. The project was one of
16 regional smart grid demonstrations funded by the American Recovery and Reinvestment Act. It was
the only demonstration that included multiple states and cooperation from multiple electric utilities,
including rural electric co-ops, investor-owned, municipal, and other public utilities. No fewer than 55
unique instantiations of distinct smart grid systems were demonstrated at the projects’ sites. The local
objectives for these systems included improved reliability, energy conservation, improved efficiency, and
demand responsiveness.

The demonstration developed and deployed an innovative transactive system, unique in the world,
that coordinated many of the project’s distributed energy resources and demand-responsive components.
With the transactive system, additional regional objectives were also addressed, including the mitigation
of renewable energy intermittency and the flattening of system load. Using the transactive system, the
project coordinated a regional response across the 11 utilities. This region-wide connection from the
transmission system down to individual premises equipment was one of the major successes of the
project. The project showed that this can be done and assets at the end points can respond dynamically on
a wide scale. In principle, a transactive system of this type might eventually help coordinate electricity
supply, transmission, distribution, and end uses by distributing mostly automated control responsibilities
among the many distributed smart grid domain members and their smart devices.

PNWSGD: Assembling the Team and Initial Steps

The origins of the demonstration project and eventual deployment of the transactive system can be
traced to a Request for Interest jointly issued by the Bonneville Power Administration (BPA) and Battelle
Memorial Institute in 2009. Many prospective PNWSGD participants responded to the request, and from
these, ten distribution utilities and the University of Washington campus were chosen as demonstration
test sites. Because of the BPA’s interest in this research, the demonstration’s geographical extent naturally
included much of the Pacific Northwest. The selection of the 11 participant sites extended the region to
represent five Northwest states—Idaho, Montana, Oregon, Washington, and Wyoming. The PNWSGD
worked with each of these site owners to understand and document how the smart grid assets to be tested
at each site were distributed among and monitored within its distribution system. In short, the project was
one of the first and largest efforts to experiment with how to actually implement a smart grid.

Five additional organizations that came to be called “project-level infrastructure providers” were
selected to apply their systems expertise, which was critical to the development of the transactive system.
3TIER (now Vaisala) offered measurements and predictions for most of the wind generators. Alstom Grid
helped calculate the transactive signals. International Business Machines Corp. (IBM) was the system’s
chief architect and simulated transactive system performance. QualityLogic, Inc., offered system testing
and interoperability expertise. Netezza, which was purchased by IBM during the PNWSGD, offered its
massively parallel database appliance. During the course of the project, Spirae, Inc., was added to the
group with the task of supporting the utilities in their deployment and testing of their transactive system

—
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components. Battelle Memorial Institute’s Pacific Northwest Division (operator of the Pacific Northwest
National Laboratory) was asked to be the technical and organizational lead.

The PNWSGD was accomplished in four phases that were scheduled for the timely installation of
smart grid hardware and software and the new transactive system. A kickoff meeting was held in
December 2009 to share and align participants’ expectations for the demonstration. The project followed
an aggressive schedule to complete its designs and installations by mid-2012, which was planned to allow
for a two-year data collection window before the end of August 2014. Closeout activities, including the
drafting of this final technical report, continued into 2015.

Engaging Electricity Users and New Technologies

Although all of the PNWSGD partners played pivotal roles in the project, the demonstration test sites,
and their interfaces with the customers who eventually will use and benefit from smart grid technologies,
were particularly important elements of the project. One objective of a smart grid is to improve the
reliability of electric power for its end users. Toward this, PNWSGD utilities automated their distribution
systems to enable more rapid restoration of customers’ power after outages, including the application of
fault detection, isolation, and restoration. Several of the project’s utilities took advantage of automated
power-quality alerts that have become available from advanced premises metering to help them more
quickly pinpoint and respond to outages, abnormal supply voltages, and other conditions. Still others
installed batteries and automated distribution switching to define high-reliability zones, including some
that may separate from the rest of the grid and operate as microgrids when they become threatened by
power outages.

Another objective of a smart grid is to conserve energy and improve the system’s overall efficiency.
One of the simplest means to conserve energy is to replace existing equipment with more energy efficient
alternatives, as Avista Ultilities did when they replaced approximately 800 existing distribution
transformers with more efficient smart transformers. Others changed and automated their management of
their distribution systems. Examples include using reduced feeder voltages that reduce the power
consumed by some end-use loads, correction of power factor that reduces power line losses, or
coordinated volt and reactive power control that can both reduce power load and reduce system losses.

Information itself can motivate consumers to conserve energy. Several of the participating utilities
informed their customers of their historical electricity consumption via web portals or in-home displays.
The University of Washington campus greatly increased the metering of individual buildings on its
campus, and it generated new methods to inform building managers and occupants of their historical
energy practices, either monthly or in real time. A very interesting effort at the campus was to empower
its students, giving them tools to manage energy in their dormitory rooms and engaging them still further
via social media.

www.pnwsmartgrid.org
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The participating utilities reported a variety of benefits from their participation in the project and the
smart grid technologies they deployed. Anecdotal reports of their experience have been compiled as “A
Compilation of Success Stories” by BPA.!

Bringing Transactive Concepts to Life

The technical centerpiece of the project—the glue that connected the test sites, technologies and
electricity resources—was the transactive system, which was implemented to dynamically respond to
emerging conditions in the region’s power grid. The transactive system was distributed, providing a
means of coordinating behavior of demand-responsive components through a forward-looking incentive
signal and forward estimates of load behavior. The transactive system produced incentive signals,
constructed by blending energy costs and conditions of the region’s bulk generation and grid. The
system’s incentive signals were dynamic in space as well as time, representing variability across
14 geographic zones within the BPA balancing area based on location of the region’s bulk generation
resources. The system of incentive signals predicted the delivered costs of energy in the near term and
several days into the future. Large demand-side resources engaged by the transactive system included
distributed generation, campus chillers and heating, ventilation, and air conditioning, renewable energy
generation, and stationary battery energy storage systems. Smaller demand-side resources, often installed
at residential premises, included sets of communicating thermostats, water heater controllers, and smart
appliances.

The region’s bulk generation and a simplified transmission structure were emulated for the project by
Alstom Grid using their energy-management and market-management system tools. The condition of the
region’s generation and transmission systems was informed by a combination of actual grid status and
static, seasonal representations of diurnal patterns. The bulk delivered costs of electricity were also
estimated from this process, much as is done today in regions where locational marginal pricing is
practiced. It is the flexibility with which costs and incentives may be dynamically applied in this
transactive system that may help mitigate challenges of wind intermittency, encourage economic
efficiency, and flatten system load.

While the project’s transactive system did not engage demand-side assets as well as had been hoped,
the project was understood from the beginning to not be large enough to by itself have an impact on the
grid. A bold step had been taken by the demonstration to launch the transactive system so generally,
across such a large region, and to include its predictive days-ahead planning horizon. In order for the
system to have been fully proven, no fewer than eight subsystems would have necessarily been accurately
and meaningfully deployed. A key result of the project is, however, that much of the transactive system
worked as intended. Experience with the transactive system helps prepare the region to operate an
increasingly distributed electric power system making maximum use of its growing renewable energy
supply and demand-side solutions. The project leaves an updated technical specification for the
transactive system that leverages the five years of development and deployment experience. The updated

! Bonneville Power Administration. 2015. Pacific Northwest Smart Grid Demonstration Project: A Compilation of
Success Stories. Accessed at https://www.bpa.gov/Pages/home.aspx.
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specification and a corresponding reference implementation provide an important platform for future
research into transactive energy systems.

When the project looked at the transactive subsystems (as is done in Chapter 2), about half of the
subsystems were found to have performed well. Among the successes, wind resources were accurately
stated and predicted within the region by the demonstration. Unit costs and incentives were indeed
generated to represent bulk resource costs and the demonstration’s stated operational objectives. The
incentive signals were meaningfully blended at, and communicated between, the system’s multiple nodes.
A library of functions was developed that automatically determined times of events to which responsive
demand-side assets, such as water heaters, battery energy storage, and thermostats, were to respond.

There is a key observation about the performance of the transactive coordination system as compared
to conventional demand response. Even when the responses to the transactive system were automated,
utilities placed limits on the number of allowed responses. Customer agreements often specified a
maximum number of allowed events in a month. Conventional demand-response programs, either direct
load control or otherwise, are generally event-driven and are targeted toward managing few, short-lived
incidents like critical peaks. Several well-placed asset responses may be adequate for conventional
demand-response programs. Transactive systems, on the other hand, reveal a continuum of incentives to
the utilities and asset systems and could engage assets much more dynamically according the each asset’s
capabilities and the flexibility of the asset’s owner. This granularity of responses by many customers
enables those customers who are both willing and able to respond (via automated systems) to participate
according to their preferences rather than having their participation limited according to predetermined
agreements.

In addition to the results gained from the deployment of the transactive system, IBM used a model of
the regional system to assess the impact of a scaled up deployment of the transactive system. This
simulation showed that the region’s peak load might be reduced by about 8% if 30% of the region’s loads
were responding to the transactive system.

At the end of the project’s data collection period, the transactive system was turned off. The regional
incentive signals produced using the Alstom tools were not linked to operational needs of the BPA, the
regional system operator. In the absence of such linkage, there was no basis for continuing to generate the
signals once the research was completed. There are efforts underway to continue to use a small subset of
the deployed transactive control system for further regional research. If BPA or other balancing area
operators in the region define an incentive signal, the PNWSGD utilities could, in principle, resume the
use of their transactive systems.

Exploring Data—and Associated Challenges

Now that the demonstration project has concluded, it leaves behind a rich database—almost
350 billion data records. Organization of the data is based on the 55 smart grid systems defined by the
project. An extraordinary effort was needed to accurately specify the many data series that might be used
to monitor those smart grid systems. The disparity of data sources, databases, intervals, and utility data
practices that was encountered during the demonstration made the challenge even greater. The transactive
system featured a predictive time dimension that exponentially increased the volume of data that was
automatically collected from the transactive system.

www.pnwsmartgrid.org
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The project’s experience is an example of dealing with the vast amounts of new data that become
available in a smart grid. In the demonstration, much of that data was found to be unusable. Data cannot
be converted into actionable information if its quality is poor or if its units, location, or validity is
uncertain. Investments should be made to improve the quality of meter data, databases, and smart grid
data processes at all levels. As a part of these investments, there is a need for better tools to be developed
for utilities to use in managing the devices and information found in a smart grid.

Moving Forward

Along with data challenges, this report addresses the technical performance of all the smart grid asset
systems that were tested at the PNWSGD sites. It also critiques the performance of the transactive system
that was featured by the demonstration. After an introductory chapter, the performance of the transactive
system is discussed. In the three following chapters, the performances of reliability, conservation and
efficiency, and demand-responsive systems are generalized, referring to the 55 smart grid systems that
were demonstrated at the PNWSGD sites. The performance of each site owner’s smart grid systems is
presented in the final 11 chapters.

At its conclusion, the PNWSGD leaves a legacy of smart grid equipment installed with its site
owners. Eighty-eight percent of the smart grid assets remain installed and functional after the
demonstration. The remainder succumbed to the challenges of grid modernization in the early 21st
century. Some of these systems could not be successfully integrated due to interoperability problems with
other new and legacy systems with which they needed to interact. Some sets of residential devices were
removed after having been installed, due to unexpected safety problems or at the request of residential
customers. Some vendors failed to deliver their smart grid products or went out of business during the
demonstration. Nine of the removed systems were wind turbines that were taken down at a renewable
park due to safety concerns after a tower catastrophically failed and a turbine had thrown a blade. These
are considered learning experiences. The demonstration project facilitated the maturation of the smart grid
industry, and helped advance our collective thinking about the path forward. Please read further to
understand why the participants in the PNWSGD remain optimistic about smart electric power grids of
the future.

.
www.pnwsmartgrid.org
June 2015 vii






S Rowbotham
T Kain
T Rayome-Kelly

City of Ellensburg
City of Milton-Freewater
Flathead Electric

R Schneider Flathead Electric

R Ambrosio IBM

J Hosking IBM

S Ghosh IBM

M Yao IBM

R Knori Lower Valley Energy

W Jones Lower Valley Energy

J Pusich-Lester NorthWestern Energy

M Simpson Peninsula Light Company
R Grinberg Peninsula Light Company
K Whitener Portland General Electric
S Chandler Portland General Electric
M Phan Portland General Electric
L Beckett Portland General Electric
C Mills Portland General Electric
D Garcia Portland General Electric
R Bass Portland General Electric
W Sanders Portland General Electric
M Osborn Portland General Electric
W Lei Portland General Electric

q{-ﬂ&-

Acknowledgments
SMART GRID

Acknowledgments
Author:
D Hammerstrom Battelle Memorial Institute
Coauthors:
D Johnson Avista Utilities
C Kirkeby Avista Utilities
Y Agalgaonkar Battelle Memorial Institute
S Elbert Battelle Memorial Institute
O Kuchar Battelle Memorial Institute
C Marinovici Battelle Memorial Institute
R Melton Battelle Memorial Institute
K Subbarao Battelle Memorial Institute
Z Taylor Battelle Memorial Institute
B Scherer Benton PUD

The following individuals and organizations are recognized for their valuable contributions:

Vaisala (formerly 3Tier, Inc.) Alstom Grid
M Grundmeyer M Atkinson
J Lerner M Chungyoun
P Storck J Corkey
A Vandervoort H Jaffarbhoy
P Jap
.

www.pnwsmartgrid.org
June 2015 ix



Acknowledgments

Alstom Grid (Continued)
E Jensen

J Lelivelt

C Shaw

X Wang

G Wooster

M Yao

Avista Utilities
H Cummins

P Duncan

G Fischer

L Jue

Avista Utilities/Washington State University

A Bose
T Ryan

Battelle Memorial Institute

B Akyol

R Anderson
J Bernsen
P Boyd

T Carlon

K Carneau
D Chassin
P Christensen
L Connell
K Cook

A Cooke

J Dahl

G Dayley
T Edgar

M Engels
S Ennor

T Esram

A Faber

N Foster

V Genetti
B Gerber

P Gjefle

A Haas

R Hafen

D Hardman
J Hathaway
K Huston
C Imhoff

J Jao

June 2015

ok

SMART GRID

Battelle Memorial Institute (Continued)

E Jones

R Jones

S Kanyid

D King

S Kowalski
T Ledbetter
O Love

D Manz

T McKenna
J Melland

V Mendon
M Newhouse
L O’Neil

P O’Toole

C Owen

M Parker

R Pratt

C Raymond
N Sargent

B Simanton
S Singh

D Sisk

B Slonecker
A Somani

V Srivastava
S Tackett

B Vyakaranam
M Wagner

F White

D Zimmerman
M Zimmerschied

Benton PUD
C Bartram

R Dunn

J Henderson
J Sanders

Bonneville Power Administration
T Brim

L Hall

T Oliver

K Pruder-Scruggs

S Reed

D Watkins

J Williamson

www.pnwsmartgrid.org



Acknowledgments

City of Ellensburg

ok

SMART GRID

IBM (Continued)

T Barkley K Warren
L Dunbar A Webb
B Faubion J Xiong
B Leader
G Nystedt Idaho Falls Power
J Richmond V Ashton
B Titus J Flowers
W Weidert M Reed
H Dory

City of Milton Freewater

B Chadek Lower Valley Energy
M Charlo W Jones

City of Milton Freewater R Knori

L Hall J Webb

R Rambo

CVO Electrical Systems

National Energy Technology Laboratory for the
U.S. Office of ElectricityDelivery and Energy

B Leland Reliability
J Newland M Sciulli
Electsolve Technology Solutions & Services, Netezza
Inc. B Walker
J Newland
NorthWestern Energy
Flathead Electric P Corcoran
M Johnson G Horvath
J Pusich-Lester
1BM B Thomas
K Bodell
M Cohen Peninsula Light Company
D Gil S Anderson
J Hosking B Draggoo
G Janssen R Grinberg
J Kidwell J Pilling
J Kilbride M Simpson
J Malczyk D Walden
D Melville J White
S Nathan J Wigle
D Phan
J Reid Portland General Electric
M Rosenfield J L Becket
B Schloss J Dalzell
B Schmidt C Eustis
G Soumyadip P Farrell
S Srinivasan S Klotz
M Steiner E Medina
H Wang C Mills

www.pnwsmartgrid.org
June 2015 Xi



" SMART GRID

Acknowledgments

Portland General Electric (Continued) U.S. Office of Electricity Delivery and Energy
M Mohammadpour Reliability

M Moir M Smith

J Poppe

J Ross WISDM Corp.

K Teague B Burner

K Whitener M Hansen

QualityLogic, Inc.
G Cooper

B David

D Jollota

S Kang

C Kawasaki

J Mater

M Osborn

L Posson

E Prabhakaran
L Rankin

J Zuber

RAI, Inc.
S Hamilton
B Mantz

Spirae, Inc.
B Becker

M Fanning
J Harrell

S Oliver
O Pacific
A Russell

University of Washington
J Angelosante

J Carlson

J Chapman

C Kennedy

N Menter

J Park

G Sakagawa

J Seidel

U.S. Department of Enerqy, Pacific Northwest
Site Office
J Erickson

www.pnwsmartgrid.org
June 2015 Xii



Acronyms and Abbreviations

June 2015

Acronyms and Abbreviations

3TIER, Inc., now part of Vaisala
advisory control signal
Avista-generated request signal
Avista-generated signal
average heavy-load hour energy
advanced metering infrastructure
Bonneville Power Administration
Customer Average Interruption Duration Index
California Public Utilities Commission
conservation voltage reduction
distribution automation
direct digital control
distribution management system
U.S. Department of Energy
demand response
demand-response unit
distributed standby generation
Electricity Infrastructure Operations Center
fault detection, isolation, and restoration
facility energy management system
General Electric
grid friendly appliances
home area network
heavy-load hour
heating, ventilating, and air conditioning
International Business Machines Corp.
Internet-Scale Control System software
Institute of Electrical and Electronics Engineers
in-home display
impact metric
interval start time
Information Technology
integrated volt/\VVAr control
load-control module
light-load hour
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LTC load tap changer
LV prefix for Lower Valley, Wyoming, project tests
MAIFI Momentary Average Interruption Frequency Index
MAN metropolitan area network
MDM meter data management
O&M operations and maintenance
OMS outage management system
OoMT Outage Management Tool
p.u. per unit
PCT programmable communicating thermostat
PHEV plug-in hybrid electric vehicle
PLC power line carrier
PNWSGD Pacific Northwest Smart Grid Demonstration
PRB Project Review Board
PUD Public Utility District
PV photovoltaic
RTU remote terminal unit
SAIDI System Average Interruption Duration Index
SAIFI System Average Interruption Frequency Index
SCADA supervisory control and data acquisition
SCL Seattle City Light
SEL Schweitzer Engineering Laboratories
SSPP Salem Smart Power Project
ST field site node (of the transactive coordination system topology)
STP Smart Thermostat Pilot
SvC static VAr compensator
T&D transmission and distribution
TFS transactive feedback signal
TIS transactive incentive signal
TWACS Two-Way Automatic Communication System
TZ transmission zone
ucC unit commitment
uw University of Washington
VVO volt/VAr integration and optimization
WECC Western Electricity Coordinating Council
WSU Washington State University
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Units
$/h dollars per hour
°C degree(s) Celsius
F Fahrenheit
GW gigawatts
GWh gigawatt-hour(s)
kv kilovolt(s)
kVAr kilovolt-ampere(s) reactive
kw kilowatt(s)
kWh kilowatt-hour(s)
kwh/h kilowatt-hour(s) per hour
m meter(s)
mph miles per hour
MW megawatt(s)
MWh megawatt-hour(s)
p.u. per unit
S second(s)
VAr volt-amperes reactive
W watt(s)
y year
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