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Outline

• Some properties of power grids
• continuous, discrete, and social dynamics,, 

power-laws, network structure
• Smart Grids?

• Reducing the impact of blackouts
• Reciprocal Altruism
• Survivability
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Complete ignorance
infinite intelligence



Properties of power grids
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1. Non-linear continuous dynamics
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Kirchoff’s
laws at 
nodes

Swing eq.
at generator



2. Discrete dynamics
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Selfish Relays?



3. Social Dynamics
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3. Social 
Dynamics
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4. Cascading failures 

Agents
react “selfishly”

to stress
Changes in

network
structure

Initial
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Hidden 
failure(s)

Massive failure
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5. Large grid failures are frequent
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6. Power-laws in failure sizes
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Most infrastructure systems 
see very large failures
more frequently than we would 
get from Gaussian statistics

Air/road traffic, internet, 
finance, …

Slope = -1.2



7. …but, unlike the www, air traffic, many 
social networks, no power-law in structure
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Much has been recently
written about making “small-
world” and “scale-free” 
networks more robust to 
failure and attack.



The electrical structure
of the 300 node grid

(also 411 links)

4. A notable difference between electrical and 
topological structure
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The topology of a 300 
node, 411 link power grid

Which can be used
to divide up a grid into
subgrids



Smart grids
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The Smart Meter to the Rescue

• Lots of $ for 
smart grids—
mostly meters

• If we don’t get the 
signals and 
architecture right 
the benefits will 
under-weigh the 
costs
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Top-down “Smart Grid”
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exchange
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Bottom-up
Information flow
(Consumer 
preferences, real-
time demand, etc.)

Top-down
control flow
(CSP makes 
decisions)

Most plans for 
V2G run the same
way



Bottom-up “Smarter Smart Grid”

16

Utility meter does
only metering,
but with time-
stamps

System operator

Information portal

CustomerCustomerCustomerCustomerCustomerCustomer

Local control flow
Consumer controls 
decisions

Top-down 
information flow
Prices, 
incentives, 
available to 
consumer, 
devices

Time-stamped 
meter readings
Real time or 
monthly



Thoughts on smart-meters

• Load that responds to signals will be 
tremendously better than the existing 
structure

• If utilities structure things hierarchically not 
enough people will sign up to make it worth 
the (massive) $
• Lots of money for smart meters, public rebellion.
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Mitigating failures
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So what?

• We have a system with complex dynamics, 
large, frequent failures, selfish relays

• We probably won’t eliminate large failures

• How can we make them less frequent and 
less costly
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Mitigating large failures

Method 1 – Survivability Method 2 – Adaptive 
reciprocal altruism
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Survivability

• Make sure that vital 
services have backup
energy

• Link the backup energy
sources to create
emergency micro-grids
• PGE program
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Mitigating large failures

Method 2 – Adaptive 
reciprocal altruism
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How can
we make 
the power
grid components
less selfish
and a bit
more intelligent?



Mitigating cascading failures

Changes in
network
structure

Initial
Disturbance

Stress

Hidden 
failure(s)

Massive failure

Use policy and 
technology to encourage 
agents to act more 
adaptively and 
altruistically
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Agents
react “selfishly”

to stress



Model Predictive Control
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Model Predictive Control

• Agents predict the consequences of their 
actions, adjust their predictions as they get 
more information

• MPC:
• Predictive models

• Intelligence
• Feedback

• Adaption
• Optimization tools
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MPC goals (for power grids)

• Minimize 
• Risk + Costs of mitigating risk

• Risks: overloads on transmission lines, under-voltage
• Mitigation: reduce load, change generators (P, |V|)

• Cost weighted

• Subject to
• Predictive model:

• Physical limits to devices
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MPC
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Power
Network

ΔPD
ΔPG
ΔVG

Measured stress (currents, voltages, etc.)



Effective in models, but…

• Centralized MPC control is often infeasible
• Politics (FERC, UTCE)
• Speed
• Robustness
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Reciprocal Altruism
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Vampire bats
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Trivers (1971): RA is “behavior that benefits another organism, not closely related, 
while being apparently detrimental to the organism performing the behavior.”

(Wilkenson, 1984, Nature)
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Reciprocal altruism

Agent A
Eat daily

Agent B
Eat daily

Two agents practice “reciprocal altruism” when 
they choose to consider the other’s goals while 

making local decisions
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Reciprocal altruism

Agent A
Eat daily

Make sure that B
eats daily

Agent B
Eat daily

Make sure that A
eats daily

Two agents practice “reciprocal altruism” when 
they choose to consider the other’s goals while 

making local decisions



RA in a network
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Apply severe, random failures to a 
300 node system
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Results
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Conclusions

• Cascading failures are inherent to 
infrastructure systems
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Conclusions & Future work

• Electricity grids (and other infrastructures) differ from 
social networks, www
• Much can be learned from the science emerging from 

study of these networks.
• We need to understand the structure of network before we 

can improve it most effectively

• The smart grid needs careful thought
• Cascading failures appear to be a fundamental 

property of tightly connected networks
• We can learn from biological systems to make 

infrastructure services survivable, resilient and adaptive
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Questions?

paul.hines@uvm.edu
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