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e Some properties of power grids

e continuous, discrete, and social dynamics,,
power-laws, network structure

« Smart Grids?
 Reducing the impact of blackouts

e Reciprocal Altruism
e Survivabllity

Complete ignorance
infinite intelligence
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1. Non-linear continuous dynamics
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2. Discrete dynamics

Selfish Relays?




3. Soclal Dynamics
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3. Social

MISO/Tim Johns: HMidwest IS0, this is Tim.

D na I ICS Hoosier Energy/Bob: Yes, this is Bob at Hoosier.

MISO/Tim Johns: Hey Bob.

HEoosier Energy/Bob: What do yvou know, buddy?

MISO/Tim Johns: Same old stuff, man.

Hoosier Energy/Bob: Having just a guiet night,
kicking back, watching Tv. I8 that what‘’s going on up
there?

MISO/Tim Johns: Wwhat, watching TV? Sure. Yes.

Hoosier Energy/Bob: I understand. Busy, man.
This is kind of a strange thing, man.

MISO/Tim Johns: Pretty much.

Hoosier Energy/Bob: Yes, 1t is. HNo, Tim, I just
came in a little bit, you know. Just ciphering things up.

MISO/Tim Johns: We‘re s8till ciphering up here.

Hoosier Energy/Bob: Do yvou have any kind of a —

_ kind of a mock diagram of that region that's affected



4. Cascading failures

Hidden

Initial failure(s)

Disturbance

Agents
react “selfishly”
to stress

Changes in
network
structure




5. Large grid failures are frequent
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6. Power-laws In fallure sizes
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Most infrastructure systems
see very large failures

more frequently than we would
get from Gaussian statistics
Air/road traffic, internet,
finance, ...

10+
X Actual data
Weibull fit Slope =-1.2
107k — Power-law fit (S=1012)

Prob. that x =S for a randomly chosen blackout with size x

10 10°*
Blackout size (S) in year-2000 MW



7. ...but, unlike the www, air traffic, many

soclal networks, no power-law in structure
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4. A notable difference between electrical and
topological structure

[
The topoloc
node, 411 lini

Which can be used
to divide up a grid into
subgrids
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The Smart Meter to the Rescue

* Lots of $ for
smart grids—
mostly meters

If we don’t get the
signals and

architecture right
the benefits will
under-weigh the
Costs




Top-down “Smart Grid”

System operator

Most plans for
V2G run the same
way

Informatloﬁ
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\ (Consumer
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! time demand, etc.)
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control flow
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Customer



Bottom

Top-down
information flow
Prices,
incentives,
available to
consumer,
devices

-up “Smarter Smart Grid

\ Time-stamped
\' meter readings
! Real time or

' monthly

—

Customer

; N\ Utility meter does
Local control flow f 4l only metering,
Consumer controls L = - WM but with time-
decisions —_——

stamps




Thoughts on smart-meters

* Load that responds to signals will be
tremendously better than the existing
structure

o If utilities structure things hierarchically not
enough people will sign up to make it worth
the (massive) $

* Lots of money for smart meters, public rebellion.
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 We have a system with complex dynamics,
large, frequent failures, selfish relays

* \WWe probably won’t eliminate large failures

« How can we make them less frequent and
less costly




Mitigating large failures

Method 1 — Survivability Method 2 — Adaptive
reciprocal altruism




Survivability

 Make sure that vital
services have backup
energy

 Link the backup energy
sources to create
emergency micro-grids
« PGE program




Mitigating large failures

Method 2 — Adaptive
reciprocal altruism

How can

we make

the power

grid components
less selfish

and a bit

more intelligent?




Mitigating cascading fallures

Hidden
failure(s)

Initial Use policy and
technology to encourage
agents to act more
adaptively and

altruistically

Disturbance

Agents
react “selfishly”
to stress

Changes in
network
structure
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Model Predictive Control

o Agents predict the consequences of their
actions, adjust their predictions as they get
more information

e MPC:

* Predictive models
* Intelligence

* Feedback
« Adaption
e Optimization tools




MPC goals (for power grids)

e Minimize
* Risk + Costs of mitigating risk
* Risks: overloads on transmission lines, under-voltage

« Mitigation: reduce load, change generators (P, |V|)
« Cost weighted

e Subject to Ix

» Predictive model: Xg+1 = Xk + %Au

* Physical limits to devices



AP,
AP

* Minimize
* Risk + Costs of mitigating risk
Risks: overloads on transmission lines, under-voltage

Mitigation: reduce load, change generators (P, |V|)
Cost weighted

Power
Network

« Subject to P

* Predictive model: Xg+4+1 = Xi + EAU

+ Physical limits to devices

Measured stress (currents, voltages, etc.)



Effective In models, but...

e Centralized MPC control is often infeasible
 Politics (FERC, UTCE)
e Speed
* Robustness
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Vampire bats

Trivers (1971): RA is “behavior that benefits another organism, not closely related,
while being apparently detrimental to the organism performing the behavior.”
(Wilkenson, 1984, Nature)



Reciprocal altruism

Two agents practice “reciprocal altruism” when
they choose to consider the other’s goals while
making local decisions

Agent A
Eat daily

Agent B

Eat daily




Reciprocal altruism

Two agents practice “reciprocal altruism” when
they choose to consider the other’s goals while
making local decisions

Agent A
Eat daily

Make sure that B =X Agent B
eats daily Eat daily

VELCEI R UETYA
eats daily




RA In a network
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Apply severe, random failures to a
300 node system




Results
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Conclusions

e Cascading failures are inherent to
Infrastructure systems




Conclusions & Future work

 Electricity grids (and other infrastructures) differ from
social networks, www

* Much can be learned from the science emerging from
study of these networks.

e We need to understand the structure of network before we
can improve it most effectively

 The smart grid needs careful thought

e Cascading failures appear to be a fundamental
property of tightly connected networks

* We can learn from biological systems to make
Infrastructure services survivable, resilient and adaptive
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