Complexity in Power Grids: Surviving and Mitigating Large Failures in Power Grids

Paul Hines College of Engineering and Mathematical Sciences University of Vermont

9-Mar-09, LANL With gratitude for financial support from NSF, PJM, and ABB

NY City, Nov. 9, 1965 © Bob Gomel, *Life*

Outline

- Some properties of power grids
 - continuous, discrete, and social dynamics,, power-laws, network structure
 - Smart Grids?
- Reducing the impact of blackouts
 - Reciprocal Altruism
 - Survivability

Complete ignorance infinite intelligence

Properties of power grids

Paul Hines College of Engineering and Mathematical Sciences University of Vermont

9-Mar-09, LANL With gratitude for financial support from NSF, PJM, and ABB

NY City, Nov. 9, 1965 © Bob Gomel, *Life*

1. Non-linear continuous dynamics

2. Discrete dynamics

Selfish Relays?

3. Social Dynamics

2003 8-14 CH20 Second RC 1749hrs.wav

MISO/Tim Johns: Midwest ISO, this is Tim. Hoosier Energy/Bob: Yes, this is Bob at Hoosier. MISO/Tim Johns: Hey Bob.

Hoosier Energy/Bob: What do you know, buddy?

MISO/Tim Johns: Same old stuff, man.

Hoosier Energy/Bob: Having just a quiet night, kicking back, watching TV. Is that what's going on up there?

MISO/Tim Johns: What, watching TV? Sure. Yes. Hoosier Energy/Bob: I understand. Busy, man. This is kind of a strange thing, man.

MISO/Tim Johns: Pretty much.

Hoosier Energy/Bob: Yes, it is. No, Tim, I just came in a little bit, you know. Just ciphering things up. MISO/Tim Johns: We're still ciphering up here. Hoosier Energy/Bob: Do you have any kind of a --kind of a mock diagram of that region that's affected

4. Cascading failures

5. Large grid failures are frequent

6. Power-laws in failure sizes

7. ...but, unlike the www, air traffic, many social networks, no power-law in structure

4. A notable difference between electrical and topological structure

Smart grids

Paul Hines College of Engineering and Mathematical Sciences University of Vermont

9-Mar-09, LANL With gratitude for financial support from NSF, PJM, and ABB

NY City, Nov. 9, 1965 © Bob Gomel, *Life*

The Smart Meter to the Rescue

- Lots of \$ for smart grids mostly meters
- If we don't get the signals and architecture right the benefits will under-weigh the costs

Top-down "Smart Grid"

Bottom-up "Smarter Smart Grid"

Thoughts on smart-meters

- Load that responds to signals will be tremendously better than the existing structure
- If utilities structure things hierarchically not enough people will sign up to make it worth the (massive) \$
 - Lots of money for smart meters, public rebellion.

Mitigating failures

Paul Hines College of Engineering and Mathematical Sciences University of Vermont

9-Mar-09, LANL With gratitude for financial support from NSF, PJM, and ABB

NY City, Nov. 9, 1965 © Bob Gomel, *Life*

So what?

 We have a system with complex dynamics, large, frequent failures, selfish relays

• We probably won't eliminate large failures

How can we make them less frequent and less costly

Mitigating large failures

Method 1 – Survivability

Method 2 – Adaptive reciprocal altruism

Survivability

- Make sure that vital services have backup energy
- Link the backup energy sources to create emergency micro-grids
 - PGE program

Mitigating large failures

Method 2 – Adaptive reciprocal altruism

How can we make the power grid components less selfish and a bit more intelligent?

Mitigating cascading failures

Model Predictive Control

NY City, Nov. 9, 1965 © Bob Gomel, *Life*

Model Predictive Control

 Agents predict the consequences of their actions, adjust their predictions as they get more information

- MPC:
 - Predictive models
 - Intelligence
 - Feedback
 - Adaption
 - Optimization tools

MPC goals (for power grids)

- Minimize
 - Risk + Costs of mitigating risk
 - Risks: overloads on transmission lines, under-voltage
 - Mitigation: reduce load, change generators (P, |V|)
 - Cost weighted
- Subject to
 - Predictive model: $\mathbf{x}_{k+1} = \mathbf{x}_k + \frac{d\mathbf{x}}{d\mathbf{u}}\Delta\mathbf{u}$
 - Physical limits to devices

MPC

Measured stress (currents, voltages, etc.)

Effective in models, but...

- Centralized MPC control is often infeasible
 - Politics (FERC, UTCE)
 - Speed
 - Robustness

Reciprocal Altruism

NY City, Nov. 9, 1965 © Bob Gomel, *Life*

Vampire bats

Trivers (1971): RA is "behavior that benefits another organism, not closely related, while being apparently detrimental to the organism performing the behavior." (Wilkenson, 1984, Nature)

Reciprocal altruism

Two agents practice "reciprocal altruism" when they choose to consider the other's goals while making local decisions

Reciprocal altruism

Two agents practice "reciprocal altruism" when they choose to consider the other's goals while making local decisions

RA in a network

Apply severe, random failures to a 300 node system

Results

Conclusions

 Cascading failures are inherent to infrastructure systems

Conclusions & Future work

- Electricity grids (and other infrastructures) differ from social networks, www
 - Much can be learned from the science emerging from study of these networks.
 - We need to understand the structure of network before we can improve it most effectively
- The smart grid needs careful thought
- Cascading failures appear to be a fundamental property of tightly connected networks
 - We can learn from biological systems to make infrastructure services survivable, resilient and adaptive

Questions?

paul.hines@uvm.edu