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Abstract 
The goal of this investigation was to characterize the manual and automated response 

of residential customers to high-price “critical” events dispatched under critical peak 
pricing tariffs tested in the 2003-2004 California Statewide Pricing Pilot. The 15-month 
experimental tariff gave customers a discounted two-price time-of-use rate on 430 days in 
exchange for 27 critical days, during which the peak period price (2 p.m. to 7 p.m.) was 
increased to about three times the normal time-of-use peak price. We calculated response 
by five-degree temperature bins as the difference between peak usage on normal and 
critical weekdays. Results indicated that manual response to critical periods reached -0.23 
kW per home (-13%) in hot weather (95-104.9°F), -0.03 kW per home (-4%) in mild 
weather (60-94.9°F), and -0.07 kW per home (-9%) during cold weather (50-59.9°F). 
Separately, we analyzed response enhanced by programmable communicating thermostats 
in high-use homes with air-conditioning. Between 90°F and 94.9°F, the response of this 
group reached -0.56 kW per home (-25%) for five-hour critical periods and -0.89 kW/home 
(-41%) for two-hour critical periods.  

Introduction 
High wholesale prices associated with short-term spikes in electric demand can 

significantly increase average utility costs and customer rates. Distribution congestion and 
related reliability issues can also affect the relative cost of peak service. One way to 
encourage load reductions during such critical peak periods is through dynamic pricing, 
which enables changes to retail electricity rates on an hourly or daily basis to better reflect 
real-time wholesale costs and reliability needs. Dynamic pricing has long been considered 
an economically efficient approach to reducing short-term demand and price spikes [1-3].  

In May of 2003, the California Public Utilities Commission approved funding for the 
Statewide Pricing Pilot (SPP). The main goal of the pilot and the accompanying impact 
evaluation was to develop an econometric model for predicting demand response1 under 
alternative pricing plans [4, 5]. The goal of the analysis presented in this paper is to 
augment the results of the SPP impact evaluation data by providing evidence of how 
residential demand response changes with temperature. 

                                                 
* Corresponding author, email address KBHerter@lbl.gov, fax 1-916-653-3478 
1 Throughout this paper, we use the term “response” to indicate the difference between the actual amount of 
electricity used and the baseline amount that would have been used in the absence of the critical event 
stimulus: i.e. response = actual - baseline. Thus, a more negative response indicates a higher load drop. 
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Maximum peak loads in California occur during hot weather, when air-conditioning 
demands are high. Figure 1 shows the relationship between average statewide temperature 
and loads in the California Independent System Operator (ISO) control area for 2004. In 
this year, the maximum daily peak load was 45.6 GW on a day when the average statewide 
peak temperature was 90°F [6]. These maximum peaks are projected to increase by 1.7% 
per year through 2010, driving the need for about one gigawatt (GW) of new generation 
capacity annually [7]. One way to meet maximum peaks is to build peaking generators, 
which can cost over $500 per megawatt-hour (MWh) [8]. Along with the costs of sizing 
transmission and distribution systems to meet the highest possible peak loads, the fully-
allocated cost of serving peak loads is many times higher than the cost of serving the 
average load. To minimize these peak expenditures, California is working towards a goal 
of meeting 5% of peak load with price-induced demand response by 2007 [9].  

25

30

35

40

45

50

50 55 60 65 70 75 80 85 90 95 100

Daily Statewide Maximum Temperature 
(population weighted)

D
ai

ly
 P

ea
k 

Lo
ad

 (G
W

)

 
Figure 1. Daily peak loads as a function of temperature, California ISO weekdays 2004 [6] 

 
Most electricity rates in use today are not dynamic, but are instead what we call 

"static," meaning that retail prices have been decided for all hours, and can only be changed 
by changing the electricity tariffs - a process that can take months or years. Dynamic rates, 
in contrast, afford utilities the option to change or “dispatch” prices on short notice in 
response to temporary system or wholesale pricing conditions. The five graphs showing 
hourly prices in Figure 2 illustrate the difference between dynamic and static rates and 
some of the possible variations of each. The fully predictable static rates include flat and 
time-of-use (TOU) rates. We consider all rates without diurnal time variation to be flat – 
this includes tiered rates such as those common in California. TOU rates, in contrast, offer 
reduced off-peak prices in exchange for increased peak prices, with the intent of reducing 
daily peak loads. Dynamic rates differ in that they allow dispatchable prices. Common 
dynamic rate types include critical peak pricing (CPP) and real-time pricing (RTP). Under 
a CPP rate, prices are reduced on normal days in exchange for high peak prices on 
“critical” days, which are typically triggered according to supply, demand, temperature, 
wholesale prices or some combination of these. RTP rates, in contrast, are updated every 
day on an hourly or sub-hourly basis, to closely mirror wholesale prices. Both CPP and 
RTP rates require that customers be given advance notice of upcoming price changes, and 
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both can be coupled with technologies that allow automatic modification of end-use loads 
according to customer or utility preferences.  

 

 
Figure 2. Rate types showing static and dynamic components 
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Several studies of residential response to CPP rates have been conducted. 

Unfortunately, inconsistencies in pricing, experimental design, analysis and reporting 
complicate presentation and comparison of results. Calculation of price elasticity values is 
often used to normalize price differences, but cannot address other rate discrepancies, such 
as core rate type or the number, duration and timing of critical peak events. While the 
prevalence of econometric evaluation implies that many consider the rate to be the most 
important variable, other variables that can affect response include temperature, the 
existence and characteristics of control technologies, the existence and characteristics of 
event notification, participant education and information provided before and during the 
experiment, and the demographics of the sample, to name just a few. These problems, 
combined with inconsistent analysis techniques and insufficient reporting make direct 
comparison between studies or extrapolation to new programs nearly impossible. 

The residential dynamic rate pilots that have been conducted in the U.S. can be divided 
into two categories: those with and those without automated control technologies. Studies 
of the former type report that participants on CPP rates with control technologies use 30-
40% less electricity during critical events than do control groups on flat rates [10-12]. Until 
the California SPP, studies of how customers respond to dynamic rates in the absence of 
control technologies were almost non-existent. A recent analysis of real-time pricing 
without communicating technology at a small energy cooperative in Chicago reports an 
average load reduction of about 10% in the first two hours after a high-price notification, 
but near zero reduction when averaged over a five-hour period [13]. Despite the respectable 
response rates reported by these pilot evaluations, full-scale programs are not widespread. 
This is partly because of the high costs of the metering and response technologies used in 
the pilots. Also responsible is hesitation on the part of policy makers and utilities to initiate 
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such a politically controversial change without certainty of success in their own service 
territories. Such certainty can be attained only at the expense of considerable time and 
money invested in additional pilot testing. 

Two factors have caused many states and utilities to seriously consider dynamic pricing 
for the residential sector. First, market problems encountered in California and elsewhere 
during the electricity crisis of 2000 and 2001 lent support to arguments in favor of linking 
short-term retail and wholesale costs. Second, technology advances contributed to 
declining costs for the advanced metering infrastructure that dynamic rates require. 
Together, these factors prompted an unprecedented interest in advanced metering and 
dynamic pricing across the U.S. In California, state agencies and utilities designed and 
implemented the Statewide Pricing Pilot to test the effectiveness of CPP tariffs with 
interval meters and customer notification, both with and without the use of response 
technologies [4]. The Impact Evaluation of the California Statewide Pricing Pilot (SPP 
Impact Evaluation) calculated price elasticity values based on the price and load data, and 
then used these values to model corresponding load impacts [5].  

The analysis described in this paper augments the SPP Impact Evaluation by providing 
a detailed breakout of how response changes with temperature. Since system demand is 
closely related to temperature, this approach provides insights on the question of whether 
load reductions are greatest when they are most needed, typically on very hot days when 
system demands are high. The results presented here can also be extrapolated to estimate 
expected response for any local or regional temperature distribution.  

Data Collection and Description 
Data analyzed for this paper were collected in the California SPP, a complex 

experiment involving about 2500 residential and small commercial customers. The 
discussion presented here will focus on describing just the subset of participants to be used 
in this analysis: the 656 residential SPP participants on a CPP rate without control 
technology and the 122 residential SPP participants on a CPP rate with programmable 
communicating thermostats (PCTs). Following is a brief description of the experimental 
design for the California SPP. For more detailed information, the reader is directed to 
consult the SPP Impact Evaluation [5].  

Sampling for the Statewide Pricing Pilot 
As described above, this analysis includes data from two residential CPP treatment 

groups in the SPP. The group without response technologies we refer to as the “manual” 
group, while the group with programmable communicating thermostats we call the “PCT” 
group. These two sample groups are taken from two different populations, so their results 
are not directly comparable.  

To take advantage of existing hardware, the 122 PCT group participants included in 
this study were solicited from a large thermostat load-control program in the San Diego 
Gas and Electric service territory. All participants of the original load-control program 
were high-use (>600 kWh/month), single-family homes with central air-conditioning [14]. 
The PCTs allowed automatic control of air-conditioning units when the critical event signal 
was received. 

Sampling for the manual group was stratified by building type and climate zone with 
the intent of producing a group that was representative of the California population. The 
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sample design for the manual group made use of 12 strata as shown in Table 1. We roughly 
describe the climate zones as Coast, Foothills, Valley and Desert, where the Coast includes 
Arcata, San Francisco, Salinas and San Luis Obispo; the Foothills include Santa Rosa, San 
Jose, Oxnard, Long Beach and western San Diego; the Valley includes Chico, Stockton, 
Santa Clarita, Riverside and eastern San Diego; and the Desert includes Redding, Fresno, 
Bakersfield and Palm Springs. The statewide weights in Column D indicate the percentage 
of the California population in each stratum. Later, we use these values to weight within-
stratum load impact estimates to be representative of the state. The values in Column E 
indicate the number of SPP participants in each stratum. 

 
Table 1. Sample design for the manual CPP group 

A. 
Stratum 

B. 
SPP climate zone - 

description 

C. 
Dwelling/usage type 

D. 
Statewide 
population 

weight 

E.  
Sample 

size 

1 1- Coast Apartment 5% 24 
2 1- Coast Single-family, High usage 2% 21 
3 1- Coast Single-family, Low usage 5% 16 
4 2 - Foothills Apartment 15% 64 
5 2 - Foothills Single-family, High usage 10% 101 
6 2 - Foothills Single-family, Low usage 22% 62 
7 3 - Valley Apartment 6% 47 
8 3 - Valley Single-family, High usage 8% 101 
9 3 - Valley Single-family, Low usage 15% 81 
10 4 - Desert Apartment 2% 28 
11 4 - Desert Single-family, High usage 3% 70 
12 4 - Desert Single-family, Low usage 5% 41 

TOTAL 656 
 
Potential participants for the manual group were randomly selected from within each 

stratum. They were then sent enrollment packages notifying them that they had been 
selected to “participate in an important statewide research project,” promising a total 
participation incentive payment of $175 over the course of the experiment. Contact with 
chosen customers was repeatedly attempted until (1) they agreed to participate, (2) they 
declined to participate, or (3) two weeks had passed without contact. As customers 
declined or were deemed unreachable, replacement customers within the stratum were sent 
enrollment packages. Ultimately, about 20% of customers accepted the invitation to 
participate, 15% declined to participate, and the remaining 65% were unreachable or 
otherwise excluded. Surveys and subsequent analysis indicated that the final sample was a 
representative cross-section of California residents by appliance holdings, income, 
education, and 16 other measured variables [15]. 

Materials and Methods for the Statewide Pricing Pilot 
All SPP participants were supplied with new electricity meters that collected usage 

values at 15-minute intervals. Installation of most meters was conducted between April and 
June of 2003. Load data collection began for each participant as the meter was installed, 
and the new time-varying rates were put into effect on July 1, 2003. Load data collected 
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before treatment rates went into effect was collected as “pretreatment data.” For 
participants who enrolled after July 1, 2003, pre-treatment data were collected for about a 
month before their new rates were initiated. 

The experimental CPP tariffs tested in the California SPP correspond to rate type B-2 in 
Figure 2, consisting of a two-price TOU rate on normal days and a critical peak price on 
critical days. Twelve times each summer (May through October) and three times each 
winter (November through April), the critical price was charged over the five-hour peak, 
from 2 p.m. to 7 p.m. on weekdays. Numerous rates were applied across the three utilities 
and multiple climate zones. Roughly speaking, average prices were about 10 cents/kWh 
during off-peak hours, 20 cents/kWh during peak hours, and 60 cents/kWh during critical 
peak hours (see Figure 3). For comparison, the average electricity price for the average 
non-participating California customer was about 13 cents/kWh.2

 

 

$ 
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Hour of the day 

$0.10 
$0.20
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Figure 3. Average prices for the residential CPP tariffs used in the SPP.  (Actual prices varied by location, 
monthly usage, season and treatment group.) 

 
Between July 1, 2003 and September 30, 2004, a total of 27 critical events were called: 

7 occurred on Mondays, 6 on Tuesdays, 5 on Wednesdays, 5 on Thursdays, and 4 on 
Fridays. CPP customers without PCTs were notified by telephone of an impending critical 
event by 4 p.m. on the day before the event took place. CPP customers with PCTs were 
notified four hours before the event was to take place, and their PCTs were signaled at the 
onset of the critical period.3

Analysis and Results 
As noted previously, an important aspect of this analysis is that we compare each 

participant’s consumption on critical weekdays to their consumption on normal weekdays. 
As a result, the impacts presented in this paper are the incremental impacts of CPP events: 
those impacts beyond the impact of the core TOU pricing compared to the flat rate. We 
chose this method because:  

1. response to time-of-use rates has been well studied 
2. after initial adjustment to the new tariff, customers will only “respond” to the 

dynamic portion of the rate; i.e., response to the TOU component happens within a 
                                                 
2 To ensure comparability with the control rate, the experimental rates designed for the SPP combined the 
default inclining block rate structure with the new time-varying and dispatchable components. 
3 For technical reasons, SPP thermostat group participants were not allowed to choose the default temperature 
change during events, but were allowed to change the temperature setting at any time.  
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brief window after rates are initiated, while response to the CPP component of the 
rate occurs at each critical event4, and  

3. our approach allows us to avoid the use of pretreatment data to adjust for self-
selection bias.5  

Because the manual and PCT sample groups and analysis differ substantially, we divide 
the remainder of this section into two parts. The first part describes the data analysis and 
results for the manual group. The second part describes the data analysis and results for the 
PCT group.  

Manual Group Response 
To ensure reasonable comparability between load on normal and critical days, we 

disaggregate the load data into five-degree temperature bins as shown in Table 2. 
Temperature ranges are defined using maximum temperatures recorded during peak hours 
at each of 58 weather stations geographically assigned to participants. The values in 
Column B indicate that the mean temperatures for each range were similar for normal and 
critical days. In general, negative values in the colder temperature ranges, and positive 
values in the hotter temperature ranges will have the effect of underestimating response 
results. Column C shows the distribution of critical events across the temperature ranges 
for the SPP. Note that the SPP critical events were determined according to experimental 
design rather than according to true electrical emergencies. Historically – excluding the 
anomalous winter of 2000-2001 – electric system emergencies in California occur most 
often when much of the state is experiencing very high temperatures. 

 
Table 2. Description of temperature range data for manual group 

A. 
Temp Range 

(°F) 

B. 
Average Temp 
Difference (°F): 

Critical – Normal 

C. 
Distribution of SPP 
Customer-Events 

D. 
Number of 
Participants 

Exposed 

E. 
Statewide 
Population 

Represented 
50 - 54.9 -0.2 4% 242 42% 
55 - 59.9 -0.3 4% 340 57% 
60 - 64.9 -0.3 3% 211 39% 
65 - 69.9 0.4 4% 158 38% 
70 - 74.9 0.6 8% 218 53% 
75 - 79.9 0.0 13% 318 68% 
80 - 84.9 -0.4 12% 386 77% 
85 - 89.9 0.5 11% 465 77% 
90 - 94.9 -0.1 12% 340 57% 
95 - 99.9 0.2 14% 364 42% 

100 - 104.9 0.4 13% 287 32% 
 

Column D lists the number of pilot participants exposed to at least one normal and one 
critical day with maximum peak temperatures in the given temperature range. In Column 
E, we show the percentage of California customers represented by that number. So, for 
                                                 
4 Response in the form of additional efficiency investment continues long after initiation of the rate. This 
paper focuses on real-time short-term response. 
5 There is some debate about how accurately the SPP pretreatment load data reflects uninfluenced pre-
experiment load, since customers received information and instructions about how to reduce peak loads prior 
to the pretreatment period.  
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example, the 287 participants that experienced both normal and critical days between 
100°F and 104.9°F during the pilot represents 32% of the California population. The other 
369 participants, representing 68% of California customers, did not experience these high 
temperatures; thus we cannot say anything about how they would respond under such 
conditions. Note that the percentages shown in Column E are not simply the quotient of the 
participants exposed (Column D) and the total number of participants (656) because of the 
stratum weighting associated with the values in Table 1.  

The first step in our analysis is to calculate hourly load data by averaging across the 
four 15-minute load readings in each hour. For each temperature range, we then calculate 
mean 24-hour load shapes for both normal and event days as follows: 

1. Calculate mean customer load shapes by averaging across days, within 
customer. This step ensures that each participant is counted only once. Participants 
not having load data for both normal and critical days are excluded. 

2. Calculate mean stratum load shapes by averaging across customers, within 
stratum. The result of this step for the manual group is two sets of 12 load shapes 
per temperature range, one for each stratum.  

3. Calculate mean statewide load shapes by applying population and exposure 
weightings to each stratum.  Population weights indicate the actual statewide 
percentage of customers in each stratum, while exposure weights indicate the 
percentage of participants actually exposed to the temperatures in the range. 
Together, the weighting scheme provides expected statewide load shapes for those 
customers exposed to temperatures within the range. 

Together, these three steps result in two sets of 24 mean hourly values: one for normal 
days and one for critical days. The final hourly mean response values are then calculated as 
the difference between the normal and critical values. Mathematically, our calculation for 
mean statewide hourly response can be represented as shown in Eq. 1 in Appendix A. 
Table 3 shows per household peak (Column A) and off-peak (Column B) usage results for 
the manual response group, including normal usage, critical usage, response estimates and 
standard errors for the response estimates. Column C shows the change in average daily 
consumption between normal and critical weekdays. 

 
Table 3. Average manual household (hh) usage and response, by 5°F temperature bins 

 A. 
PEAK HOURS 

B. 
OFF-PEAK HOURS 

C. 
DAILY

Temp Normal Critical Δ kW SE(ΔkW) Δ% Normal Critical Δ kW SE(ΔkW) Δ% Δ%

(°F) (kW/hh) (kW/hh) (kW/hh) (kW/hh) (%) (kW/hh) (kW/hh) (kW/hh) (kW/hh) (%) (%) 
50-54.9 0.88 0.78 -0.09 0.033 -11% 0.78 0.78 0.00 0.030 0% -2%
55-59.9 0.80 0.75 -0.05 0.024 -7% 0.74 0.75 0.01 0.025 1% 0%
60-64.9 0.70 0.76 0.05 0.048 8% 0.65 0.70 0.05 0.028 8% 8%
65-69.9 0.58 0.54 -0.04 0.023 -7% 0.56 0.55 -0.01 0.022 -3% -4%
70-74.9 0.60 0.58 -0.01 0.025 -2% 0.59 0.60 0.01 0.020 1% 1%
75-79.9 0.67 0.63 -0.04 0.015 -6% 0.62 0.63 0.01 0.016 2% 0%
80-84.9 0.75 0.71 -0.04 0.021 -6% 0.64 0.66 0.02 0.017 3% 1%
85-89.9 0.91 0.85 -0.06 0.026 -7% 0.72 0.74 0.02 0.020 3% 0%
90-94.9 1.06 1.02 -0.04 0.030 -4% 0.78 0.82 0.04 0.021 5% 2%
95-99.9 1.57 1.33 -0.24 0.039 -15% 1.06 1.03 -0.03 0.030 -3% -6%

100-104.9 1.80 1.59 -0.21 0.062 -12% 1.21 1.20 -0.01 0.044 -1% -4%
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Figure 4 shows the average peak period response for each temperature range. For each 

temperature range, we have also presented from Table 2 the percentage of California 
homes represented by the response results. The overall trend indicates that response, like 
load, peaks at the higher temperatures and to a lesser extent at the lower temperatures. 
Visual examination of Figure 4 indicates similar response across the temperature ranges 
50-59.9°F, 60-94.9°F, and 95-104.9°F. Based on this observation, we simplify further 
graphical representation of results by averaging over the 5°F bins within these cold, mild, 
and hot temperature ranges. Table 4 provides a consolidated version of Table 3 based on 
this aggregation. 
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Figure 4. Average customer response as a function of temperature, in kWh/hour 

 
Table 4. Average household (hh) usage on normal and critical days, by temperature range 

  A. 
PEAK HOURS 

B. 
OFF-PEAK HOURS 

C. 
DAILY

Day- Temp Normal Critical Δ kW SE(ΔkW) Δ% Normal Critical Δ kW SE(ΔkW) Δ% Δ%

type (°F) (kW/hh) (kW/hh) (kW/hh) (kW/hh) (%) (kW/hh) (kW/hh) (kW/hh) (kW/hh) (%) (%) 
Cold 50-59.9 0.84 0.77 -0.07 0.029 -9% 0.76 0.76 0.01 0.028 1% 0.84
Mild 60-94.9 0.75 0.73 -0.03 0.028 -4% 0.65 0.67 0.02 0.021 3% 0.75
Hot 95-104.9 1.69 1.46 -0.23 0.052 -13% 1.13 1.11 -0.02 0.038 -2% 1.69

 
Figures 5, 6 and 7 show average hourly household electricity consumption in kilowatts 

(kW) on normal and critical days for hot, mild and cold temperatures, respectively. Critical 
event periods are marked by the shaded areas and confidence intervals (α=0.1) are given 
for each hourly value. N represents the sum of data points across temperature bins; thus a 
single customer can be counted more than once per graph, because each graph aggregates 
several temperature bins. In Figure 5 (95-104.9°F), we see significant response averaging -
0.23 kW across all five critical hours. Outside the event period, the difference between 
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usage values on normal and critical days is negligible. The difference between the two load 
shapes in Figure 6 (60-94.9°F) is nearly imperceptible, with a mean response of only -0.03 
kW during event hours. In Figure 7 (50-59.9°F), loads appear to increase a considerable 
amount in the mornings before the critical events, implying some load shifting. Response 
appears negligible in the first three hours of the event, and increases significantly in the 
fourth and fifth hours, for a mean response of -0.07 kW per home. 
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Figure 5. Hourly usage on normal and critical days during hot weather, 95-104.9°F 
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Figure 6. Hourly usage on normal and critical days during mild weather, 60-94.9°F 
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Figure 7. Hourly usage on normal and critical days during cold weather, 50-59.9°F 
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Figure 8. Average hourly load response (%), by temperature 

 
Figure 8 shows hourly response patterns as a percentage of normal-day loads. The 

greatest response as a fraction of load is obtained on the hot days (95-104.9°F), which 
average -13% response across the five peak hours. These reductions appear to come mainly 
as a result of conservation rather than load shifting, as off-peak load increases are minimal 
and total daily energy use decreases by 5%. On cold days, peak response averages -9% and 
daily consumption decreases by only 1%, owing to increased loads in the morning hours 
before the critical event. During mild temperature days, events averaging a -4% response 
are preceded and followed by higher than typical loads, so that overall daily consumption 
increases by 1%. 
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PCT Group Response 
The analysis for the PCT group mirrors the analysis described above with the following 

exceptions. 
• Sufficient data existed only for temperature bins from 70 to 94.9 
• The PCT group was not stratified; thus the calculation represented by Eq. 1 in 

Appendix A is simplified by solving for one stratum rather than twelve. 
• Some critical events were five hours long while others were two hours long. 

Separate analyses address these different event lengths. 
Table 5 and Table 6 summarize the PCT group characteristics and their average critical 

peak response by temperature for five- and two-hour events, respectively. In all 
temperature ranges, five-hour events elicit much lower peak reductions and higher off-peak 
increases than do two-hour events. This contributes to the result that, overall, energy use on 
five-hour event days is substantially higher than energy use on normal days, particularly 
between 75°F and 89.9°F. A similar but less pronounced effect is seen on two-hour event 
days. Figure 9 shows the average response by temperature range for both CPP event 
lengths.  

 
Table 5. Average PCT household (hh) usage and response, five-hour critical period 
   A. 

PEAK HOURS 
B. 

OFF-PEAK HOURS 
C. 

DAILY
Temp N Normal Critical Δ kW SE(ΔkW) Δ% Normal Critical Δ kW SE(ΔkW) Δ% Δ%

(°F)  (kW/hh) (kW/hh) (kW/hh) (kW/hh) (%) (kW/hh) (kW/hh) (kW/hh) (kW/hh) (%) (%) 
70 - 74.9 93 1.06 0.97 -0.09 0.03 -8% 1.01 0.99 -0.01 0.02 -1% -3%
75 - 79.9 110 1.25 1.25 -0.01 0.03 -1% 1.06 1.19 0.13 0.02 13% 10%
80 - 84.9 118 1.48 1.40 -0.08 0.03 -6% 1.14 1.29 0.14 0.03 13% 8%
85 - 89.9 61 1.68 1.56 -0.12 0.05 -7% 1.22 1.47 0.25 0.04 20% 13%
90 - 94.9 90 2.20 1.64 -0.56 0.07 -25% 1.39 1.49 0.09 0.06 7% -3%
 
Table 6. Average PCT household (hh) usage and response, two-hour critical period 
   A. 

PEAK HOURS 
B. 

OFF-PEAK HOURS 
C. 

DAILY
Temp N Normal Critical Δ kW SE(ΔkW) Δ% Normal Critical Δ kW SE(ΔkW) Δ% Δ%

(°F)  (kW/hh) (kW/hh) (kW/hh) (kW/hh) (%) (kW/hh) (kW/hh) (kW/hh) (kW/hh) (%) (%) 
70 - 74.9 65 0.89 0.77 -0.12 0.07 -14% 0.94 0.92 -0.03 0.10 -3% -4%
75 - 79.9 175 1.22 1.07 -0.15 0.04 -13% 1.06 1.15 0.09 0.06 8% 6%
80 - 84.9 227 1.45 1.21 -0.24 0.04 -16% 1.18 1.25 0.07 0.06 6% -2%
85 - 89.9 149 1.70 1.40 -0.30 0.07 -17% 1.28 1.40 0.12 0.09 9% 6%
90 - 94.9 75 2.19 1.29 -0.89 0.13 -41% 1.49 1.31 -0.19 0.14 -13% -16%
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Figure 9. Mean PCT household response, by temperature and length of event 

 
Figure 10 shows the average hourly household load for the PCT group on both normal 

and five-hour critical days between 90 and 94.9°F, when five-hour response was highest. 
Like the results for manual group shown in Figure 5, these results indicate minimal shifting 
of load to off-peak hours. Most surprising is the lack of rebound after the event period, 
when one would expect the vast majority of the air-conditioning units to begin running 
simultaneously, with the effect of causing a higher than normal demand. 
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Figure 10. Hourly PCT household usage on normal and five-hour critical days, 90-94.9°F 
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Figure 11. Hourly manual household usage on normal and two-hour critical days, 80-84.9°F 

 
Figure 11 shows the average hourly household load for the PCT group on both normal 

and two-hour critical days between 80 and 84.9°F. The overall load shapes illustrated here 
are roughly representative of all the normal and two-hour critical load shapes between 70 
and 89.9°F. In these lower temperatures, it is unclear whether the visible shift from critical 
hours to pre- and post-event hours is a result of behavioral changes or PCT activity. Above 
90°F (not shown), negative response to two-hour critical events encompasses eight or nine 
hours, rather than just the two critical hours as shown in the lower temperatures. We are 
unable to explain this result.  

Comparing Manual and PCT Group Response 
Given the above results, we then considered the question of how the CPP response 

might differ between those with and those without automatic controls. Unfortunately, the 
results of the manual and PCT groups provided above cannot be compared directly because 
the samples consist of different customer types: the manual group is representative of the 
general statewide population, while the PCT group represents only high-use single-family 
homes with central air-conditioning in SPP climate zones 2 and 3 in San Diego. To provide 
some initial insights on this issue, we recalculated manual response excluding all 
participants except those 126 living in large single family homes in climate zones 2 and 3 
with central air conditioning. Small sample sizes disallowed further restriction by utility. 
Average normal load shapes for the new manual and PCT groups did not differ statistically 
(α=0.1), but mean demand differed by about 15% across hours as shown in Figure 12. 
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Figure 12. Average load shapes for manual and PCT groups on normal weekdays, averaged across 70-94.9°F 
temperature bins 
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Figure 13. Comparing mean response of high-use single family homes, with and without PCTs 

 
Our results indicate that response for the manual and PCT groups are the same in two 

of the five temperature bins (70-74.9°F and 85-89.9°F), manual group response is higher 
between 75°F and 84.9°F, and PCT group response is higher in the 90-95°F temperature 
range. Plotting the estimates as a fraction of load did not change these overall results. 
Given the aforementioned sampling inconsistencies, these mixed results, and the lack of 
data above 95°F, we recommend further research in this area. 

Estimating System Impacts 
This section provides an example of how the above results might be extrapolated to 

produce rough estimates of system-wide demand response. To ground our example in 
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reality, we use data from the six electrical system emergencies called by the California 
Independent System Operator (ISO) from 2002 to 2005. The dates of these six emergencies 
are listed in the first column of Table 7. For each emergency, we then use nine 
representative weather stations to estimate the percentage of customers statewide that were 
exposed to the temperature ranges designated in this study. System loads are taken from 
California ISO data, while residential loads are estimated based on average residential 
usage for those days in the two largest California service territories.  

We present results for two scenarios in Table 7. In the first, under column D, we 
assume that all of the approximately nine million customers in the California ISO service 
area are on a CPP rate without technology. The second scenario, listed under column E, 
differs in that we assume that high-usage customers with air conditioning, which is about 
one-quarter of California homes, use PCTs to respond to events. In this calculation, we 
conservatively estimate that these customers represent only one-quarter of California 
residential load. Residential response values are calculated as temperature-weighted 
averages of the response values given in Table 4 and Table 5. System savings are 
calculated as the quotient of residential response in GW and system peak load. The values 
given in Table 7 indicate that manual response might have offset between one and three 
percent of system load on these event days, while use of PCTs by large customers might 
have offset an additional one percent of system load. 6 With only a 2-3% load difference 
between stage 2 and stage 3 emergencies in California, these results imply that the load 
reductions gained through residential CPP rates, with or without PCTs, could be an 
effective resource for avoiding blackouts. 

 
Table 7. Hypothetical effects of residential CPP rates with and without PCTs on actual California system 
events 2002-2005 

A. 
Date 

B. 
Peak Load 

C. 
Temperature 

Exposure 

D. 
All Manual 
Response 

E. 
Manual and PCT 

Response 
 Res. 

(GW) 
System 
(GW) 

>90°F 
(%) 

>95°F 
(%) 

Res. 
(%) 

Res. 
(GW) 

System  
(%) 

Res. 
(%) 

Res. 
(GW) 

System 
(%) 

7/9/02 13.3 40.7 66 43 -8 -1.0 -3 -19 -1.4 -3 
7/10/02 14.0 40.8 54 54 -9 -1.3 -3 -16 -1.5 -4 
5/28/03 11.6 38.4 54 38 -7 -0.9 -2 -16 -1.1 -3 
3/29/04 7.4 31.8 56 0 -4 -0.3 -1 -17 -0.5 -2 
7/21/05 13.7 43.1 56 56 -9 -1.2 -3 -17 -1.5 -3 
7/22/05 13.8 43.1 66 56 -9 -1.3 -3 -19 -1.6 -4 

 

Discussion and Recommendations 
The importance of maintaining system reliability has been highlighted internationally in 

outages that have caused major economic disruptions and safety hazards. This research has 
shown that dynamic pricing in the residential sector can be used to reduce peak demands, 
especially during the hottest days and hours of the year, when outage risks are highest. Our 
results show that residential response to CPP was highest when maximum daily 

                                                 
6 Note that these values illustrate a statewide response to emergencies. In real-life, however, emergencies tend 
to be localized as a result of transmission failures or unusually high local temperatures. Rough response 
values can be estimated for local emergencies in the same way, using local temperature and load values.  
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temperatures were above 90°F. With few exceptions, however, SPP participants responded 
to CPP events at all temperatures. This means that CPP can provide reliability value on a 
year-round basis, whereas AC load control programs are only useful during the summer 
cooling season.  

Our analysis also indicates that response to CPP events was higher when critical event 
periods were shorter.  For the group with PCTs, average hourly response to two-hour 
critical events was nearly double the response to five-hour events. We expected this result 
to occur as a consequence of AC units gradually coming back on as indoor temperatures 
reached the higher setting; however, hourly analysis shows fairly steady and even 
increasing response across the five-hour period. Unfortunately, event duration variation 
was not part of the experimental design for the manual group. 

Comparison between five-hour event response of those with and without PCTs 
provided mixed results. Above 90°F, response of customers with PCTs was nearly four 
times the response of a comparable group of participants without PCTs. Between 75°F and 
84.9°F, this relationship is reversed, with the manual response about four times the PCT 
response. A possible explanation of these results is that customers with PCTs rely on the 
PCT to respond to price and so do not pay much attention to the CPP event signal. Thus, 
when temperatures are low and air-conditioning is not being used, there is no response. On 
the other hand, those without PCTs must consciously adjust thermostat settings to respond 
to CPP events in hot weather. These customers are more likely to be aware of the need for 
action during CPP events, and thus may be more likely to intentionally change energy-use 
behavior during mild weather events as well. Assuming that most system events occur 
when temperatures are above 90°F, use of PCTs may increase response. However, 
consideration of public funding or PCT standards should take into account the significant 
response of those without PCTs when performing cost-benefit analyses.  

An additional factor in evaluating the reliability value of CPP is how it compares to 
peaking generation plants in terms of costs and reliability benefits. System operators are in 
the long-established habit of treating demand as an exogenous variable: demand is to be 
met regardless of the cost of power plants and fuel. In the near term, it is unlikely that CPP 
will be viewed by system planners as providing the same reliability benefit as peaking 
generation. With experience, however, system operators are likely to compile the data 
needed to confidently use demand response options like CPP to relieve short-lived supply 
shortages. 

Finally, CPP rates have important equity benefits. The basic tenet of setting rates for 
regulated utilities is that rates should match costs. Until now the costs of metering were 
such that rates linking wholesale and retail prices were not feasible. Customers faced rates 
that had no relation to the time-varying costs of the electric system. Now, time-varying and 
dynamic rates like CPP are becoming increasingly possible as interval metering costs 
decrease. Under CPP rates, particularly those with appropriate TOU cores, customers can 
be charged more for electricity when it costs the utility more and less for electricity when it 
costs the utility less. CPP rates are also more equitable than AC cycling incentive 
payments, which are disbursed regardless of program use or customer contribution.  
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Limitations of this Study 
Response to dynamic tariffs can vary considerably depending on several factors. Some 

of the characteristics of the pilot design and data analysis that could affect response results 
include the following. 

• Sampling Bias. The voluntary nature of the SPP sampling method would cause 
inflated response results if volunteers were more responsive than those who rejected 
the offer to participate. A rigorous analysis described in an early draft of the 2003 
Impact Assessment concluded that, based on 19 measured variables, the CPP 
treatment group was an unbiased sample [15]. It is plausible, however, that the 20% 
who accepted the participation request were simply more responsive to requests in 
general, an immeasurable variable, and so more likely to be more responsive to the 
rate as well. It is impossible to avoid this type of bias in any voluntary experiment, 
and also impossible to determine to what extent the potential bias exists.  

• Participation Payment. It is not clear how the participation payment affected 
results, if at all. It might have discouraged response in otherwise responsive 
customers, who considered bill savings insignificant in comparison to the $175 cash 
payment. On the other hand, it might have more readily persuaded customers who 
were unusually attentive to monetary issues. Such customers might be more likely 
to respond as a result of this pre-existing, but unmeasured, characteristic. 

• Timing and duration of the critical event. The PCT group analysis showed that 
the two-hour events elicited considerably more response than the five-hour events. 
The critical period for the manual group was always 2 p.m. to 7 p.m. A longer, 
shorter or more flexible critical period would likely have resulted in different 
response estimates. For example, in Figure 7 the event ends before residential loads 
reach their maximum in hour 20. Had the event been called in just hours 19 and 20, 
average response would likely have been larger and would have better coincided 
with the winter system peak. 

• Analytical temperature differences. Our analysis relies on a comparison of usage 
on normal and critical days at the same temperature. Values listed in Table 2 
indicate that, compared to normal days, average temperatures were slightly higher 
on hot CPP days and slightly lower on cold CPP days. This will have the effect of 
underestimating response values, since loads are higher on hotter summer days and 
colder winter days.  

 
Further uncertainties arise when considering that these results show response in only 

the first 15 months of a new tariff. The SPP Impact Evaluation showed that response rates 
in the first and second summers were statistically the same [5]; however, extrapolation out 
to 10 or 15 years is not possible. Over time, the following factors might change the 
magnitude of residential response to CPP.  

• Customer Learning. Response to a longer-term CPP rate could increase as 
customer understanding of the rate, their energy use, and opportunities for savings 
improved.   

• Technology Investments. This and previous studies provide evidence that energy 
consumption information displays and automated end-use controls can increase 
energy savings [16, 17]. In the longer term, increasing availability of and 
investment in such technologies could significantly increase response. 
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• Efficiency Investments. Investments in efficiency measures in response to the new 
tariffs would have the effect of increasing overall savings at the expense of real-
time demand response potential. For example, replacing an incandescent light bulb 
with a compact fluorescent light bulb decreases the demand response potential of 
that particular end-use by about two-thirds. We do not consider this a problem, 
since efficiency improvements as peak reduction measures reduce the need for 
demand response in the first place. 

Future Research 
Future research might address some of our more unusual findings. For example, we 

found unexpectedly low response results in the 60-64.9°F and 90-94.9°F temperature bins 
for the manual group. Other unexpected findings presented here include the two-hour event 
response for the PCT group, which was higher than expected below 90°F and extended 
well beyond the critical period when maximum temperatures exceeded 90°F. Finally, we 
consistently found a lack of load rebound at higher temperatures for all of the experimental 
groups, despite expectations that synchronized AC cycles would induce a larger than 
normal load immediately following the event.  

PCTs are currently being considered for California building standards. Given our mixed 
results in the comparison between those with and without PCTs, it is important that any 
PCT cost-effectiveness analysis consider the apparent lack of response below 90°F, while 
above 90°F counting only the CPP response beyond what can be obtained without 
technology. While our analysis provides a cursory examination of this issue, it was based 
on data not specifically designed for this comparison. Consequently, we recommend that 
future research provide a more comparable dataset. 

One issue alluded to but not examined in this study is: What is the optimum timing and 
duration of a CPP event, given specific system conditions? For example, California system 
loads peak twice on cold days, once at 8 p.m. just after the CPP events end. This implies 
that cold weather events for the manual group were called too early (see Figure 7). Our 
results also show that duration must be considered, since there is a significant tradeoff 
between event duration and the magnitude of response. 

As stated previously, our results represent the response to CPP events after the core 
TOU is in place; they do not address response to the core TOU rate. One question this 
raises is: Based on these results, what do we know about response to a critical event when 
the core rate is flat rather than TOU? From economic and engineering perspectives, we 
expect that the real-time response of customers on a flat core rate would be higher than the 
real-time response of customers on a TOU core rate, because a flat rate would not 
encourage the daily efficiency and conservation measures a TOU rate would. For example, 
under a TOU rate, a customer might program her thermostat to increase the set point by 
two degrees to 78 during the peak period every day. During critical events, she might be 
willing to forgo another two degrees to 80. If instead, the core rate were flat, she would 
leave her thermostat at 76 every day except critical days, during which she would increase 
the set point to 80. While the total response to the tariff on event days is the same in these 
two cases, the response to the CPP event is larger in the case where the core rate is flat, 
because the baseline load is larger. From a behavioral perspective, on the other hand, we 
suspect that a CPP rate with a TOU core would affect greater overall response than would a 
CPP rate with a flat core because those regularly accustomed to responding to a TOU rate 
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would likely have a better understanding of the actions needed to respond to a critical 
event. Further research in this area is warranted. 

The limited data we have on the most extreme temperature conditions indicate that 
response drops off in the hottest and coldest weather. This result corroborates anecdotal 
information and is logical, as one might conjecture that in extreme temperatures comfort 
through space heating and cooling becomes more valuable than the cost of electricity 
needed to supply it. Future research might look for further evidence upholding or refuting 
this hypothesis. In addition, future research might consider to what extent this trend, if 
actual, is a problem, given that only a small percentage of customers are likely to be 
exposed to such extreme temperatures, and when they are, an even larger percentage of 
customers are likely to be exposed to the high-response temperature ranges. 

Finally, the results presented here were derived from experimental data spanning only 
15 months. As discussed previously, there are many possible outcomes for a longer term 
response. Customers could learn with education and practice, increasing manual response, 
and might invest in more efficient appliances to reduce peak demand needs. Where event 
signals were broadcast, customers might also invest in control technologies such as PCTs 
to automatically respond to event signals. On the other hand, the possibility exists that 
customers would become less sensitive to events with time, as the newness of the rate 
subsided. We suspect that such temporal apathy might be hastened by excessive or 
unexplained events. These issues should be considered in any future long-term 
implementation of CPP tariffs. 

Conclusions 
From a system perspective, dynamic pricing is promising as a means of linking 

wholesale and retail electricity markets more directly than can be done with static rates.  
This link is important for economically encouraging demand reductions when the system 
needs it most. Recent cost reductions in the metering systems needed for dynamic pricing 
have prompted increased interest in residential dynamic rate offerings. 

This study examined the residential demand effects of CPP tariffs on two different 
groups. The first group, designed to be representative of the California population, was 
given only the most basic components of a CPP tariff: a CPP rate with a TOU core, an 
interval meter, and personal notification of high-price events. These customers responded 
to high price signals manually. In addition to the basic components, participants in the 
second group were given PCTs that allowed automatic control of air-conditioning units 
when the critical event signal was received. Since the sample for this second group 
consisted only of high-use customers with air-conditioning, the two groups were not 
directly comparable. 

We calculated response as the difference between peak usage on normal days, when 
participants paid the TOU peak price, and peak usage on critical days, when participants 
were given advance notification and paid the critical peak price. For both groups, we show 
that the average response depends on the maximum temperature during the critical peak 
event, with greatest response occurring during the hottest temperatures. Manual response to 
five-hour CPP events averaged -13% above 95°F, -4% between 60°F and 94.9°F, and -9% 
between 50°F and 59.9°F. Average five-hour response of the PCT group reached -25% 
between 90°F and 94.9°F, while response to two-hour events reached -41% in this 
temperature range.  
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To allow rough comparison between the manual and PCT groups, we recalculated 
response values for high-use customers with air-conditioning in the manual group. We 
found that the manual group responded more between 75°F and 84.9°F, while the 
thermostat group responded more above 90°F. As California currently considers requiring 
PCTs in Title 24 building standards, these results warrant further research. 

Assuming these results are representative of a statewide CPP rate, California could 
count on about 1 GW load reduction from residential CPP on hot event days, and about 
one-third of that response on mild days. Use of PCTs by one-quarter of the residential load 
would increase CPP event response by about 25%. 

While there are many areas for potential future research, we consider the following to 
be of greatest import: 

• improved comparison between response of those with and without PCTs 
• optimum CPP timing and duration under various system scenarios 
• comparison between demand effects of CPP rates with flat or TOU cores 
• longer term CPP rate effects (e.g. five to ten years) 
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Appendix A. Calculating Average Hourly Load Response 
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Where: i = temperature range (from Table 2); j = hour of the day j (1-24); s = stratum; p 

= participant; c = critical day; n = normal day; Pijs = number of participants in stratum s 
having both normal and critical values in temperature range i for hour j; Cips = number of 
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critical days in temp range i for participant p in stratum s; Nips = number of normal days in 
temp range i for participant p in stratum s; Expis = number of participants in stratum s 
exposed to temperatures within range i; Sizes = total number of participants in stratum s; 
States = statewide population weighting for stratum s from Table 1; UsageCijsp = kWh usage 
for participant p in stratum s, temperature bin i, and hour j on critical days; UsageNjisp = 
kWh usage for participant p in stratum s, temperature bin i, and hour j on normal days 

Note that a simplified equation with the same results could be obtained by first 
calculating the difference between normal and critical days for each customer and then 
applying the averaging and weighting schemes. We chose the method outlined above to 
allow graphical time-series comparisons of average hourly load values for normal and 
critical days. We considered these comparisons central to our results. 

Appendix B. Comparison to Results of the SPP Evaluation 
The major differences between our study and the SPP Impact Evaluation are indicated 

in Table B1. Of critical importance is the fact that the analytical method we use to calculate 
response produces results that are not directly comparable to SPP Impact Evaluation 
results. In this study, we contrast usage of the CPP group on critical days with their usage 
on normal days, during which a two-price time-of-use rate is in effect. The SPP Impact 
Evaluation contrasted CPP group usage to that of a control group on a time-invariant rate. 
Because similarities and differences between these two sets of results are of interest, we 
provide an indirect method of comparison in the Discussion section. 

 
 

Table B1. Differences between our analysis and the SPP Impact Evaluation 
Study component SPP Impact Evaluation This paper 
Data collection No difference No difference 
Temperature binning By climate zone By 5-degree temperature bin 
Temporal binning By peak/off-peak rate period By hour and by rate period 
Control data Electrical usage of a control 

group on a flat rate 
Electrical usage of CPP  
participants on normal days 
with similar max temperature 

Self-selection bias 
correction 

Pretreatment data Within-customer comparison 
negates self-selection issue 

Load impact analysis Calculated from econometric 
estimates of price elasticity 

Calculated as population-
weighted average load impacts 

Results Response to the TOU+CPP rate Response to the CPP rate only 
 
The regression analysis indicated summer event reductions of -0.047 kW and -0.16 kW 

on normal and critical days respectively, and winter event reductions of -0.011 kW and -
0.035 kW on normal and critical days respectively [5]. The difference between these values 
implies an average -0.11 response to summer events and a -0.02 response to winter events. 
Although direct comparison is not possible, we create proxy summer and winter response 
values by average response above and below 70°F, respectively. Using the customer-event 
weights from Column C of Table 2, we calculate a summer response of -0.10 kW and a 
winter response of -0.04 kW. Thus, despite different analysis techniques, our summer 
response proxy is nearly identical to the summer response reported in the SPP Impact 
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Evaluation. On the other hand, our winter response proxy is nearly double that of the SPP 
Impact Evaluation. This inconsistency might warrant further analysis.  

Comparison to the SPP Impact Evaluation results for PCT customers is further 
complicated by variations in the timing of the critical peak events, which could be either 
two or five hours long. The SPP Impact Evaluation did not distinguish between event 
lengths, reporting average impacts for all events as -0.64 kW on critical days and -0.08 kW 
on normal days, for an average event response of about -0.56 kW. After weighting by 
temperature and event length, our analysis revealed an overall response of only -0.22 kW 
across temperature bins, largely because nearly 90% of SPP events occurred when the 
maximum temperature was below 90°F (see Figure 9). This discrepancy warrants further 
analysis. 
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