

SmartCurrents⁵⁷⁷: Technical Achievements and Practical Challenges

We transform energy into information to revolutionize the customer experience

July 28, 2010

The DTE Energy Organization

DTE Energy Non-utility Electric Utility Gas Utility Corporate & Other Operations **Power & Industrial Detroit Edison** MichCon Projects Gas Midstream Unconventional **Gas Production** 2009 Operating Revenues^{*} **Energy Trading** Gas 24% · Gas and electric utility services to 2.7 million **Key Facts** Michigan homes and businesses Electricity Non-· Energy-related services to businesses and Utility 59% industries nationwide 17% \$24.2 Billion Assets \$8 Billion Revenue 10,244 Employees

* Excludes Corp. & Other

DTE Energy's Regulated Utility Businesses

Detroit Edison

- Largest electric utility in Michigan and one of the largest in country
- Generation
 - 11,084 MW electricity
 - -9 fossil-fuel plants
 - -1 nuclear power plant

Distribution

-2.1 million customers

MichCon

· Purchases, stores and distributes natural gas throughout Michigan

1.2 million customers

Detroit Edison and MichCon Service Area

Locally, auto and steel production has experienced significant reductions in the past few years

Auto and Steel Production

 After a dramatic decrease in the recent past, auto production is rising driven by sales growth

DTE Energy

- Steel tonnage is also up significantly from last year, feeding the growing auto production
- Auto industry bailout saves southeast Michigan; though long-term recovery is still uncertain

4

Going forward, a number of issues could negatively impact **DTE Energy** customer affordability

Capital Investments in excess of depreciation

- Mandated investments in environmental control technologies
- Base capital investments to upgrade infrastructure to maintain / improve system reliability

Going forward, a number of issues could negatively impact **DTE Energy** customer affordability

Capital Investments in excess of depreciation

- Mandated investments in environmental control technologies
- Base capital investments to upgrade infrastructure to maintain / improve system reliability

Operating Cost Pressure

- Increasing coal transportation costs
- Increasing commodity prices
- Increasing benefits costs
- Inflation pressure

Going forward, a number of issues could negatively impact **DTE Energy** customer affordability

Capital Investments in excess of depreciation

- Mandated investments in environmental control technologies
- Base capital investments to upgrade infrastructure to maintain / improve system reliability

Operating Cost Pressure

- Increasing coal transportation costs
- Increasing commodity prices
- Increasing benefits costs
- Inflation pressure

Regulatory / Legislative Issues

- Deskew pushing up residential rates
- Potential challenge to the Comprehensive Energy package especially on Choice cap

Going forward, a number of issues could negatively impact DTE Energy customer affordability

Capital Investments in excess of depreciation

- Mandated investments in environmental ٠ control technologies
- Base capital investments to upgrade ٠ infrastructure to maintain / improve system reliability

Operating Cost Pressure

- Increasing coal transportation costs •
- Increasing commodity prices
- Increasing benefits costs
- Inflation pressure .

Regulatory / Legislative Issues

- Deskew pushing up residential rates ٠
- Potential challenge to the Comprehensive ٠ Energy package especially on Choice cap

Environmental Regulations/Legislations

- Climate Change Legislations
- MACT (Maximum Achievable Control Technology) for mercury
- Clean Air Interstate Rule (CAIR)
- Coal Combustion Byproduct (CCB)

Going forward, a number of issues could negatively impact DTE Energy customer affordability

Capital Investments in excess of depreciation

- Mandated investments in environmental ٠ control technologies
- Base capital investments to upgrade ٠ infrastructure to maintain / improve system reliability

Operating Cost Pressure

- Increasing coal transportation costs •
- Increasing commodity prices
- Increasing benefits costs
- Inflation pressure •

Regulatory / Legislative Issues

- Deskew pushing up residential rates ٠
- Potential challenge to the Comprehensive ٠ Energy package especially on Choice cap

Environmental Regulations/Legislations

- Climate Change Legislations
- MACT (Maximum Achievable Control Technology) for mercury
- Clean Air Interstate Rule (CAIR)
- Coal Combustion Byproduct (CCB)

Aging Fossil Fleet / Unit Retirement

- Average age for our fleet is 46 years, with a number of units approaching their end of useful life
- Unit abandonment strategy and future capacity additions will impact customer affordability

Going forward, a number of issues could negatively impact **DTE Energy** customer affordability

Capital Investments in excess of depreciation

- Mandated investments in environmental ٠ control technologies
- Base capital investments to upgrade ٠ infrastructure to maintain / improve system reliability

Operating Cost Pressure

- Increasing coal transportation costs •
- Increasing commodity prices
- Increasing benefits costs
- Inflation pressure •

Regulatory / Legislative Issues

- Deskew pushing up residential rates
- Potential challenge to the Comprehensive ٠ Energy package especially on Choice cap

Environmental Regulations/Legislations

- Climate Change Legislations
- MACT (Maximum Achievable Control Technology) for mercury
- Clean Air Interstate Rule (CAIR)
- Coal Combustion Byproduct (CCB)

Aging Fossil Fleet / Unit Retirement

- Average age for our fleet is 46 years, with a number of units approaching their end of useful life
- Unit abandonment strategy and future capacity additions will impact customer affordability

Notice of Violations (NOVs) & Litigation

Our power plant units may face additional capacity factor and/or emissions constraints due to the New Source Reviews NOVs; these constraints may force the installation of control technologies or unit retirements

Going forward, a number of issues could negatively impact E Energy customer affordability

Going forward, a number of issues could negatively impact E Energy customer affordability

Customer Affordability has become a significant driver of **DTE Energy** customer satisfaction

Intense focus on Customer Satisfaction

- Proactively seeking and providing assistance to customers who are struggling to pay utility bills
- Developing and implementing targeted initiatives to improve overall customer satisfaction

Intense focus on continuous improvement to increase productivity

- Proactively seeking and providing assistance to customers who are struggling to pay utility bills
- Developing and implementing targeted initiatives to improve overall customer satisfaction
- Productivity improvement to help offset inflation and other cost increases

DTE Energy

- Proactively seeking and providing assistance to customers who are struggling to pay utility bills
- Developing and implementing targeted initiatives to improve overall customer satisfaction
- Productivity improvement to help offset inflation and other cost increases
- Making mandated investments in our highest value-generating assets
- Strict capital discipline to mitigate affordability pressure

16

DTE Energy

- Proactively seeking and providing assistance to customers who are struggling to pay utility bills
- Developing and implementing targeted initiatives to improve overall customer satisfaction
- Productivity improvement to help offset inflation and other cost increases
- Making mandated investments in our highest value-generating assets
- Strict capital discipline to mitigate affordability pressure
- Advanced Metering Infrastructure (AMI)
- Smart Grid Technologies
- Demand side management
- Energy Optimization

Smart Grid Issues	DTE Energy's Risk Mitigation Strategy	
Demonstrating the value of the Smart Grid	 Currently developing a robust education and communication plan to ensure our major stakeholders understand the inherent value in Smart Grid technologies Will rollout technology slowly to ensure we can address customer issues proactively 	

Smart Grid Issues	DTE Energy's Risk Mitigation Strategy	
Demonstrating the value of the Smart Grid	 Currently developing a robust education and communication plan to ensure our major stakeholders understand the inherent value in Smart Grid technologies Will rollout technology slowly to ensure we can address customer issues proactively 	
Developing the Long Term Vision	 Joined the Michigan Smart Grid Collaborative with the Michigan Public Service Commission (MPSC), other utilities in Michigan and other external stakeholders to develop the long term vision for Smart Grid in our state 	

Smart Grid Issues	DTE Energy's Risk Mitigation Strategy	
Demonstrating the value of the Smart Grid	 Currently developing a robust education and communication plan to ensure our major stakeholders understand the inherent value in Smart Grid technologies Will rollout technology slowly to ensure we can address customer issues proactively 	
Developing the Long Term Vision	 Joined the Michigan Smart Grid Collaborative with the Michigan Public Service Commission (MPSC), other utilities in Michigan and other external stakeholders to develop the long term vision for Smart Grid in our state 	
Smart Grid Regulatory Issues	 Built a robust business case that is predicated on operational savings to demonstrate to the MPSC the customer value of our technology deployment 	

Smart Grid Issues	DTE Energy's Risk Mitigation Strategy
Demonstrating the value of the Smart Grid	 Currently developing a robust education and communication plan to ensure our major stakeholders understand the inherent value in Smart Grid technologies Will rollout technology slowly to ensure we can address customer issues proactively
Developing the Long Term Vision	 Joined the Michigan Smart Grid Collaborative with the Michigan Public Service Commission (MPSC), other utilities in Michigan and other external stakeholders to develop the long term vision for Smart Grid in our state
Smart Grid Regulatory Issues	 Built a robust business case that is predicated on operational savings to demonstrate to the MPSC the customer value of our technology deployment Proactively met with the MPSC to determine methodology of recovering costs
Implementation of NIST Interoperability standards	 Internally we have created a Smart Grid Standards Engagement team with subject matter experts to actively participate in NIST interoperability meetings

Smart Grid Issues	DTE Energy's Risk Mitigation Strategy	
Demonstrating the value of the Smart Grid	 Currently developing a robust education and communication plan to ensure our major stakeholders understand the inherent value in Smart Grid technologies Will rollout technology slowly to ensure we can address customer issues proactively 	
Developing the Long Term Vision	 Joined the Michigan Smart Grid Collaborative with the Michigan Public Service Commission (MPSC), other utilities in Michigan and other external stakeholders to develop the long term vision for Smart Grid in our state 	
Smart Grid Regulatory Issues	 Built a robust business case that is predicated on operational savings to demonstrate to the MPSC the customer value of our technology deployment Proactively met with the MPSC to determine methodology of recovering costs 	
Implementation of NIST Interoperability standards	 Internally we have created a Smart Grid Standards Engagement team with subject matter experts to actively participate in NIST interoperability meetings 	
Data Access / Privacy Issues	 Collaborating with other utilities and EEI to develop a position in response to the Department of Energy's Request for Information on this particular issue This is a major discussion point within the Michigan Smart Grid Collaborative 	

Smart Grid = SmartCurrents^{***}

SmartCurrents[®] is DTE's "brand" of Smart Grid, an extension of our existing GreenCurrents[®] program.

Electric Utility	Smart Grid "Brand"
 Austin Energy 	•Smart Grid 1.0
•AEP	•gridSMART
•Oncor	•Smart Texas
 Florida Power 	•Energy Smart Miami
•Xcel Energy	 Smart Grid City
•DTE	 SmartCurrents[™]

A memorable brand that leverages our *GreenCurrentssm* history and resonates with our customers

SmartCurrents[®] Framework

SmartCurrentssm will interface with existing assets, business processes, and computer applications

SmartCurrents^{®®} Framework

SmartCurrents^{®®} incorporates new applications and includes several ongoing and proposed programs

SmartCurrents^{®®} Framework

SmartCurrents^{®®} is focused on corporate objectives and will help deliver first quartile performance

DTE Energy

SmartCurrents^{®®} Framework

SmartCurrentssm is a mix of existing and new applications, the programs dependent upon them, and supports operational goals and objectives

Smart Grid Investment Grant (SGIG)

Matching stimulus dollars from the Department of Energy

DOE Grant FOA-58

- Announced the Funding Opportunity Announcement (DE-FOA-0000058) on June 25, 2009
- SGIG program will provide up to 50% percent cost matching for eligible smart grid projects with a maximum three-year duration
- The DOE set aside ~\$3.4B for SGIG, but only \$2B for applicants with projects in excess of \$20 million

DECo Application

- Submitted a two-year investment plan under the SmartCurrentsSM program
- Under the DOE topic area of *"Integrated and/or Crosscutting Systems"*, which is aimed at adding smart grid functions to multiple portions of the electric system
- Cost: \$168M
 - \$84 million from DECo and partners
 - \$84 million expected from DOE grant

Latest Status

• DTE's contract with the DOE for an \$84 million matching grant was signed and executed April 26, 2010 and will be complete in 2012.

Smart Grid Investment Grant Project Scope

A two year project within the SmartCurrents program

Information Technology (IT)

- Integrated IT systems to provide a complete and connected picture of the distribution network
- Security and Interoperability

Advanced Metering Infrastructure

Customer satisfaction and enhanced operations.....

Devices/ Systems	 Meters Cell Relays AMI Collection Engine and Meter Data Management (MDM) System 	 Bi-directional communication through three networks: Home Area Network (HAN) Local area Network (LAN) Wide Area Network (WAN) or Backhaul
Key	Bi-directional communication	OpenWay
Features	 Daily meter reads of registers and hourly intervals 	Electric Cell Relay Wide
	 Power outage and restoration notifications 	Network 900 MHz SS
	 Power quality events (voltage fluctuation, momentaries etc.), notification and storage 	Electric Meter Local Area Network
	Remote disconnect/re-connect	900 MHz SS
	Net metering	Engine and MDM System
	 Advanced tamper detection and alarms 	Network (HAN)

AMI Installation & Smart Circuit Locations

Current installation plans by meter read stations

AMI Deployment Sequence

Smart Home

Systems, Devices, and Functions

Smart Circuit

Features and Systems

Key Features

- Self-healing
- Intelligent switching and fault diagnosis
- Voltage/VAR control
- A complete and connected picture of the whole system
- System level diagnosis and modeling applications to ensure reliability and efficiency
- Business intelligence to operators and functional organizations

Remote monitoring and control devices

- "Triple Single" Reclosers
- · Automatic pole top switches
- Substation Remote Terminal Units (RTU)
- Capacitors retrofitted with remote SCADA control
- New distribution circuit design to provide additional switching options

Central

Distribution

Management

System (DMS)

Devices/

Systems

Extended communication networks

- Field Communication Network (FCN) extended to key points in distribution system
- All devices support the DNP 3.0 communication protocol

- Supervisory Control and Data Acquisition (SCADA)
- Energy Management System (EMS)
- Meter Data Management (MDM)
- Geographic Information System (GIS)
- Asset Management System (AMS)
- Outage Management System (OMS)

AMI with DOE/MPSC Grant Projects

The SGIG, combined with the balance of DOE & MPSC funded projects, touch all aspects of the Smart Grid and are geographically dispersed

AMI Deployment Sequence

3

SmartCurrents[®] = The Future of Energy

SmartCurrentssm = **Customer Satisfaction**

-Shorter, less frequent outages -Control of home energy consumption and cost -Wind Power, Solar Power, and Electric Vehicles

SmartCurrents[™] = Green

-Reduced vehicle use for meter reading, fault locating, & repairs -Integration of renewables

-Increased Electrical System Efficiency

SmartCurrents[™] = Jobs & Job Satisfaction

-700 jobs for IT contractors and Overhead Lineman

-350 permanent positions for suppliers

-Dispatch direct to trouble locations

-Reduced patrol time, particularly at night or in bad weather

-Better operating maps and mapping products