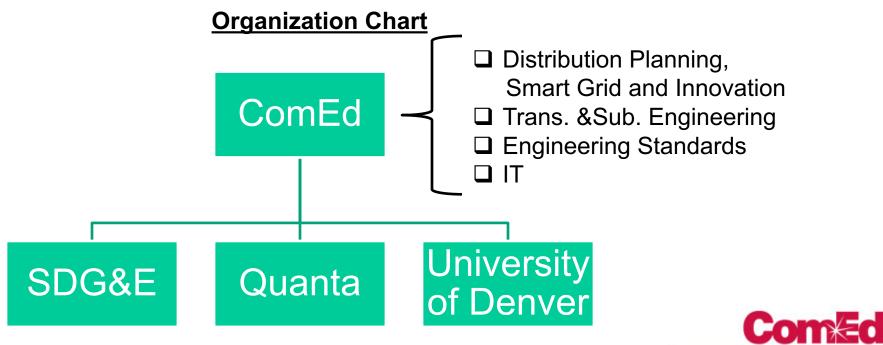


## Sensors with Intelligent Measurement Platform and Low-cost Equipment (SIMPLE)

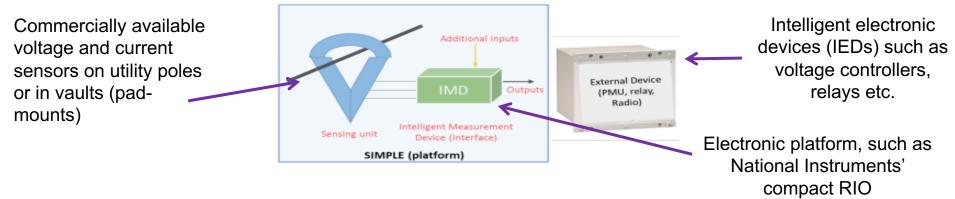
Manohar Chamana Distribution Planning, Smart Grid and Innovation

October 12, 2017


Privileged & Confidential

- Grant Information
- Introduction
- Expected Benefits
- > Technology Applications
- Key Project Milestones
- > Development Plan
- > Hardware-in-the-Loop Testing
- Field Demonstration
- Example of Field Demonstration Architecture
- > Appendix




## **Grant Information**

- SIMPLE project funded by U.S. Department of Energy's (DoE) Office of Electricity Delivery and Energy Reliability (OE).
- Project won under OE's grid modernization initiative (GMI) to improve Grid Reliability and Resilience through the Expanded Use of Distributed Energy Resources.
- Proposal submitted in November, 2016 and awarded in June, 2017.



#### What is SIMPLE (Intelligent Sensor Platform)?

- New prototype to be built with commercially available sensors interfaced with an electronic platform (e.g. National Instruments' Compact RIO platform) for performance compensation/correction.
- To be housed within a NEMA enclosure.
- Output modules interfaced to communications and external hardware running the applications.



#### Motivation

 Gaps in existing technology: Low voltage & current measurements accuracy, Insufficient bandwidth and narrow harmonic range, Lack of intelligence & integration flexibility within the modern smart grid.



- Convert analog measurements at multiple locations to digital signals using filtering and digital signal processing techniques locally.
- Make **localized decisions** with high granular data by distributed sensors located close to DER and distribution equipment of interest.
- Achieve greater observability of the distribution system when the deployed in multiple locations along distribution feeders, including service transformers.
- Adding standard communication protocols (IEC 61850, DNP3, IEC37-118, Modbus, etc.) to enable better integration and eliminates the need for protocol convergence.
- Lower cost solution compared to existing technology.



Privileged & Confidential

SIMPLE primary purpose:

Control applications, such as **voltage regulation and frequency support**, by **DER** including storage, with or without smart inverters.

- In addition, SIMPLE would be well suited for:
  - □ **Voltage sensing** for conservation voltage reduction (CVR)/voltage and volt-ampere-reactive (VAR) optimization (VVO).
  - □ Fault detection and location, such as advanced applications of employing faulted circuit indicators (FCIs) for load profile monitoring beyond their present use for fault, voltage, and current indication.
  - Distribution system state estimation and electrical distribution network topology processing.



## **Key Project Milestones**

| Milestone                         | Description                                                                                                                    |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| Project planning<br>complete      | Project Management Plan (PMP), Data Management Plan (DMP),<br>Cybersecurity and Interoperability plans completed and delivered |
| System specification<br>approval  | Acceptance of Functional Specification (or equivalent) for sensor by ComEd                                                     |
| System design completion          | Complete the design and development of SIMPLE prototype                                                                        |
| Prototype delivery                | Prototype system delivered to laboratory                                                                                       |
| High Voltage Testing<br>Complete  | High voltage testing completed at the HV Lab                                                                                   |
| RTDS Testing Complete             | Low voltage testing completed at the ComEd Grid of the Future Lab                                                              |
| System design<br>Acceptance       | Acceptance of Field Demonstration Plan by ComEd                                                                                |
| Demonstration system<br>installed | Installation of Field Demonstration within ComEd Service Territory                                                             |
| Demonstration Complete            | Completion of Field Demonstration                                                                                              |
|                                   | <b>Com Ed</b> .                                                                                                                |

Privileged & Confidential

#### Develop a modular electronic platform:

- Input modules: Sensing elements, time synchronization input signals, control and status indication signals.
- Output modules: Communications and interface of the sensor system to the hardware running the applications.

#### Approach:

□ Utilize National Instruments' Compact RIO platform (controller), to leverage the available tools for interface, interoperability, and security control implementation.

#### Process:

- □ Review voltage and current sensing solutions for overall **cost-performance** efficiency.
- □ Review, select, and acquire I/O modules for the SIMPLE system to be **interface** with the distribution system monitoring and control applications.
- □ Perform basic **integration/functionality tests** to make sure all parts of the SIMPLE system work together.
- Develop specifications for a **portable accuracy testing** system that provides NIST-traceable calibration.

Optical or resistive divider mediumvoltage sensing head

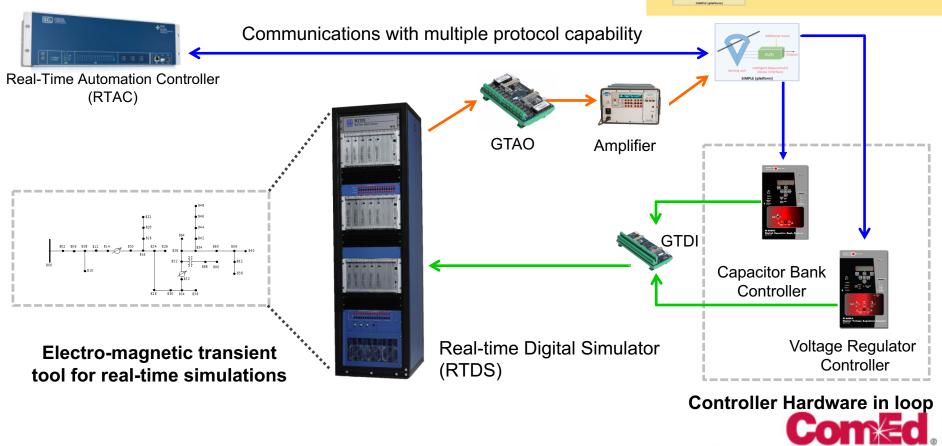


Electronic module (Intelligent Measurement Device - IMD)



Module to backplane (chassis) connections

Input module for optical voltage sensor


## **Hardware-in-the-Loop Testing**

#### RTDS hardware in the loop (HiL) Testing, covering:

- Modeling and simulation of a selected feeder. Test controls and communication functionalities.
- Interface validation and verifications for the interface functionality.

#### Example of a Volt/VAR Control (VVC) Use Case Testing:

- a) Step change of load or DG in the selected feeder, to create a disturbance.
- b) Real-Time Automation Controller (RTAC) detects a voltage violation.
- c) RTAC sends control signals to the HiL to maintain selected voltage.



An Exelon Company

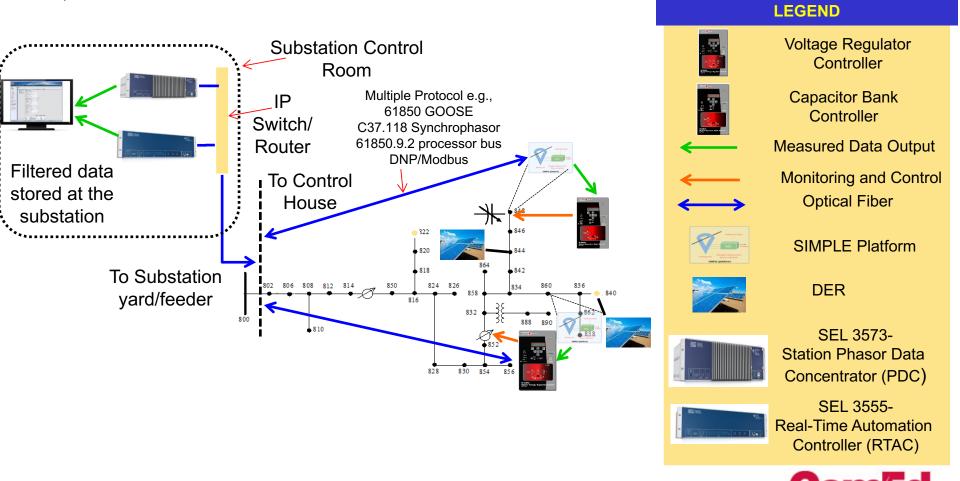
LEGEND

Measured Data Output

**Control Input** 

Communications

SIMPLE Prototype


## **Field Demonstration**

- □ Substation and distribution feeder selection process
- □ SIMPLE **location** selection process
- Use cases to be tested, including key electric variables (magnitude and phase angles of voltages and currents, and active and reactive power flows, voltage sags/swells, flicker, Total Harmonic Distortion (THD), etc.) to be measured, collected and analyzed for operation under both radial and primary loop topologies
  - DER and feeder monitoring under radial operation
  - DER and feeder monitoring under loop operation
- □ Collection, processing, validation, and analysis methods, and results analysis approach.
- Applicable city and county **permits** (environmental, construction, etc.) and approval process
- Project and risk management plans
- Detailed **engineering designs** of distribution substation and feeder enhancements
- **Construction** plan for implementation of required substation and feeder upgrades
- □ Plan for **installation**, testing and commissioning of SIMPLE prototypes
- **Operations** plan for testing and implementation of use cases
- Interoperability and cybersecurity plans



## **Example of Field Demonstration Architecture**

- Location: A site with DER interconnections, Preferred Location: IIT microgrid in Bronzeville.
- □ Install SIMPLE prototypes at 2 locations closer to voltage controllers.
- □ Two centralized monitoring and controllers to be installed within substation.
- □ Bi-directional communications with two SIMPLE prototypes to perform Volt/VAR operation (VVO), location monitoring and possible control on a selected ComEd feeder.



# Email: manohar.chamana@comed.com Thank You!







## **Sensor Attribute**

| Sensor Attribute                            | Units                                                  | Performance<br>Target | Current Value | Comments                                                                                                                                                                                                                           |
|---------------------------------------------|--------------------------------------------------------|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Estimated Capital<br>Cost \$/sensor         |                                                        | \$12,000              | \$30,000      | This is cost per 3-phase system (3-phase voltage sensor OR 3-<br>phase current sensor)                                                                                                                                             |
| Estimated<br>Installation Cost \$/sensor    |                                                        | \$4,500               | \$35,000      | Assumes MV bucket truck at \$3,000/day<br>Technician hours at \$125/hr (\$1000/day)<br>Outage time valued at \$250/hr (very conservatively)<br>Planning time is excluded (assumed being the same); additional<br>cost of interface |
| Calibration                                 | hours/sensor                                           | 2 hr                  | 16 hr         | per 3-phase system; + additional interface and comm part                                                                                                                                                                           |
| Calibration                                 | \$/sensor                                              | \$1,125               | \$10,000      | Today, there is a need for an outage, test equipment, and several<br>hours for testing. The low-cost sensor can be calibrated live with<br>the signal already on the line.                                                         |
| Calibration<br>Frequency                    | time between calibration events (e.g. months)          | 5 yr                  | 1 yr          |                                                                                                                                                                                                                                    |
| Calibration<br>Longevity                    | duration for which unit stays calibrated (e.g. months) | 5 yr                  | 2 yr          |                                                                                                                                                                                                                                    |
| Maintenance                                 | hours/sensor                                           | minimal               | TBD           |                                                                                                                                                                                                                                    |
| Maintenance                                 | \$/sensor                                              | minimal               | TBD           | With dedicated electronics, continuous monitoring of the sensor is included. We expect no additional maintenance beyond the 5-year calibration effort                                                                              |
| Maintenance Cycle                           | time between maintenance<br>events (e.g. months)       | 10                    | 5 yr          |                                                                                                                                                                                                                                    |
| Life Expectancy                             | (e.g. years)                                           | 20 yr                 | 10 yr         | 20 years or more for the primary sensing elements, 10 to 15 years for the electronics,                                                                                                                                             |
| Peripheral<br>equipment cost \$/application |                                                        | 10,000                | 50,000        | Interface to IED, Communication setup, Settings, etc.                                                                                                                                                                              |



Privileged & Confidential

| Technical Specs                                                                         | Units                                      | Target Value | Current<br>Value  | Comments                                                                                                            |
|-----------------------------------------------------------------------------------------|--------------------------------------------|--------------|-------------------|---------------------------------------------------------------------------------------------------------------------|
| Power<br>Consumption                                                                    | I Watte I                                  |              | 120W              | sensor and the interface board                                                                                      |
| Measurement<br>Range (e.g. x Volts - y Volts, x °F<br>- y °F, x Amperes - y<br>Amperes) |                                            | 2 kV - 35 kV | 15kV              |                                                                                                                     |
| Limit of Detection                                                                      |                                            | SNR > 30 dB  | SNR=20 dB         |                                                                                                                     |
| Response Time                                                                           | (ms, ms etc.)                              | 50 µs        | 20 ms             | Sensor only; add 20 ms for the communication delay in the interface                                                 |
| Accuracy                                                                                | % Full Scale                               | < 1%         | 5%                | we are limited to sensor accuracy of commercial devices                                                             |
| Resolution                                                                              | (e.g. mV)                                  | 16 bits      | Not<br>applicable | Today, sensor and the interface board are separate; we will combine them to enhance accuracy in digital environment |
| Drift                                                                                   |                                            | 0.1%/yr      | 1%/hr             |                                                                                                                     |
| Environmental                                                                           | (e.g. temperature rage,<br>humidity, et.c) | -20C to +45C | 15C to 25C        |                                                                                                                     |
| Case                                                                                    | UL rating                                  |              |                   |                                                                                                                     |
| Tamper Proof<br>Packaging                                                               | Security Measurements                      | Yes          | Not Available     | Will plan for tamper-proofing similar to revenue meters                                                             |
| Other                                                                                   |                                            |              |                   | Other Project Dependent Technical Specs                                                                             |



Privileged & Confidential

| Ease of<br>Deployment   | Units        | Performance<br>Target | Current<br>Value | Comments                                                                                                                             |
|-------------------------|--------------|-----------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Labor Required          | hours/sensor | <8hr                  | 48               | -Today at least 3 people for two full day (significant commissioning/integration effort at site<br>-Target 2 people for 4 hours max. |
| Cost                    | \$/sensor    | \$ 1,000              | \$ 6,000         | mostly labor at \$125/hr used                                                                                                        |
| Hot Stick<br>Capability |              | Yes                   | No               | The light, safe sensors can targeted to be installed live with lot-stick                                                             |

